The Tocotrienol-Rich Fraction Is Superior to Tocopherol in Promoting Myogenic Differentiation in the Prevention of Replicative Senescence of Myoblasts.

Khor SC, Razak AM, Wan Ngah WZ, Mohd Yusof YA, Abdul Karim N, Makpol S.

PLoS One. 2016 Feb 17;11(2):e0149265. doi: 10.1371/journal.pone.0149265.

Abstract

Aging results in a loss of muscle mass and strength. Myoblasts play an important role in maintaining muscle mass through regenerative processes, which are impaired during aging. Vitamin E potentially ameliorates age-related phenotypes. Hence, this study aimed to determine the effects of the tocotrienol-rich fraction (TRF) and α-tocopherol (ATF) in protecting myoblasts from replicative senescence and promoting myogenic differentiation. Primary human myoblasts were cultured into young and senescent stages and were then treated with TRF or ATF for 24 h, followed by an analysis of cell proliferation, senescence biomarkers, cellular morphology and differentiation. Our data showed that replicative senescence impaired the normal regenerative processes of myoblasts, resulting in changes in cellular morphology, cell proliferation, senescence-associated β-galactosidase (SA-β-gal) expression, myogenic differentiation and myogenic regulatory factors (MRFs) expression. Treatment with both TRF and ATF was beneficial to senescent myoblasts in reclaiming the morphology of young cells, improved cell viability and decreased SA-β-gal expression. However, only TRF treatment increased BrdU incorporation in senescent myoblasts, as well as promoted myogenic differentiation through the modulation of MRFs at the mRNA and protein levels. MYOD1 and MYOG gene expression and myogenin protein expression were modulated in the early phases of myogenic differentiation. In conclusion, the tocotrienol-rich fraction is superior to α-tocopherol in ameliorating replicative senescence-related aberration and promoting differentiation via modulation of MRFs expression, indicating vitamin E potential in modulating replicative senescence of myoblasts.

Read More

Molecular and Biochemical Analysis of the Estrogenic and Proliferative Properties of Vitamin E Compounds.

Khallouki F, de Medina P, Caze-Subra S, Bystricky K, Balaguer P, Poirot M, Silvente-Poirot S.

Front Oncol. 2016 Jan 5;5:287. doi: 10.3389/fonc.2015.00287.

Abstract

Tocols are vitamin E compounds that include tocopherols (TPs) and tocotrienols (TTs). These lipophilic compounds are phenolic antioxidants and are reportedly able to modulate estrogen receptor β (ERβ). We investigated the molecular determinants that control their estrogenicity and effects on the proliferation of breast cancer cells. Docking experiments highlighted the importance of the tocol phenolic groups for their interaction with the ERs. Binding experiments confirmed that they directly interact with both ERα and ERβ with their isoforms showing potencies in the following order: δ-tocols > γ-tocols > α-tocols. We also found that tocols activated the transcription of an estrogen-responsive reporter gene that had been stably transfected into cells expressing either ERα or ERβ. The role of the phenolic group in tocol-ER interaction was further established using δ-tocopherylquinone, the oxidized form of δ-TP, which had no ER affinity and did not induce ER-dependent transcriptional modulation. Tocol activity also required the AF1 transactivation domain of ER. We found that both δ-TP and δ-TT stimulated the expression of endogenous ER-dependent genes. However, whereas δ-TP induced the proliferation of ER-positive breast cancer cells but not ER-negative breast cancer cells, δ-TT inhibited the proliferation of both ER-positive and ER-negative breast cancer cells. These effects of δ-TT were found to act through the down regulation of HMG-CoA reductase (HMGR) activity, establishing that ERs are not involved in this effect. Altogether, these data show that the reduced form of δ-TP has estrogenic properties which are lost when it is oxidized, highlighting the importance of the redox status in its estrogenicity. Moreover, we have shown that δ-TT has antiproliferative effects on breast cancer cells independently of their ER status through the inhibition of HMGR. These data clearly show that TPs can be discriminated from TTs according to their structure.

Alpha-tocopherol quinine ameliorates spatial memory deficits by reducing beta-amyloid oligomers, neuroinflammation and oxidative stress in transgenic mice with Alzheimer’s disease.

Wang SW, Yang SG, Liu W, Zhang YX, Xu PX, Wang T, Ling TJ, Liu RT.

Behav Brain Res. 2016 Jan 1;296:109-17. doi: 10.1016/j.bbr.2015.09.003.

Abstract

The pathologies of Alzheimer’s disease (AD) is associated with soluble beta-amyloid (Aβ) oligomers, neuroinflammation and oxidative stress. Decreasing the levels of Aβ oligomer, glial activation and oxidative stress are potential therapeutic approaches for AD treatment. We previously found alpha-tocopherol quinine (α-TQ) inhibited Aβ aggregation and cytotoxicity, decreased the release of inflammatory cytokines and reactive oxygen species (ROS) in vitro. However, whether α-TQ ameliorates memory deficits and other neuropathologies in mice or patients with AD remains unknown. In this study, we reported that orally administered α-TQ ameliorated memory impairment in APPswe/PS1dE9 transgenic mice, decreased oxidative stress and the levels of Aβ oligomer in the brains of mice, prevented the production of inducible nitric oxide synthase and inflammatory mediators, such as interleukin-6 and interleukin-1β, and inhibited microglial activation by inhibiting NF-κB signaling pathway. These findings suggest that α-TQ has potential therapeutic value for AD treatment.

Read More

Association of dietary and serum vitamin E with bone mineral density in middle-aged and elderly Chinese adults: a cross-sectional study.

Shi WQ, Liu J, Cao Y, Zhu YY, Guan K, Chen YM.

Br J Nutr. 2016 Jan 14;115(1):113-20. doi: 10.1017/S0007114515004134.

Abstract

Previous studies have suggested that vitamin E (VE) may affect bone health, but the findings have been inconclusive. We examined the relationship between VE status (in both diet and serum) and bone mineral density (BMD) among Chinese adults. This community-based study included 3203 adults (2178 women and 1025 men) aged 40-75 years from Guangzhou, People’s Republic of China. General and dietary intake information were collected using structured questionnaire interviews. The serum α-tocopherol (TF) level was quantified by reversed-phase HPLC. The BMD of the whole body, the lumbar spine and left hip sites (total, neck, trochanter, intertrochanter and Ward’s triangle) were measured using dual-energy X-ray absorptiometry. In women, the dietary intake of VE was significantly and positively associated with BMD at the lumbar spine, total hip, intertrochanter and femur neck sites after adjusting for covariates (P(trend): 0·001-0·017). Women in quartile 3 of VE intake typically had the highest BMD; the covariate-adjusted mean BMD were 2·5, 3·06, 3·41 and 3·54% higher, respectively, in quartile 3 (v. 1) at the four above-mentioned sites. Similar positive associations were observed between cholesterol-adjusted serum α-TF levels and BMD at each of the studied bone sites (P(trend): 0·001-0·022). The covariate-adjusted mean BMD were 1·24-4·83% greater in quartile 4 (v. 1) in women. However, no significant associations were seen between the VE levels (dietary or serum) and the BMD at any site in men. In conclusion, greater consumption and higher serum levels of VE are associated with greater BMD in Chinese women but not in Chinese men.

Read More

Effect of α-Tocopherol on the Microscopic Dynamics of Dimyristoylphosphatidylcholine Membrane.

Sharma VK, Mamontov E, Tyagi M, Urban VS.

J Phys Chem B. 2016 Jan 14;120(1):154-63. doi: 10.1021/acs.jpcb.5b10417.

Abstract

Vitamin E behaves as an antioxidant and is well known for its protective properties of the lipid membrane. The most biologically active form of vitamin E in the human organism is α-tocopherol (aToc). Very recently (Marquardt, D.; et al. J. Am. Chem. Soc. 2014, 136, 203-210) it has been shown that aToc resides near the center of dimyristoylphosphatidylcholine (DMPC) bilayer, which is in stark contrast with other PC membranes, where aToc is located near the lipid-water interface. Here we report an unusual effect of this exceptional location of aToc on the dynamical behavior of DMPC membrane probed by incoherent elastic and quasielastic neutron scattering. For pure DMPC vesicles, elastic scan data show two step-like drops in the elastic intensity at 288 and 297 K, which correspond to the pre- and main phase transitions, respectively. However, inclusion of aToc into DMPC membrane inhibits the step-like elastic intensity drops, indicating a significant impact of aToc on the phase behavior of the membrane. This observation is supported by our differential scanning calorimetry data, which shows that inclusion of aToc leads to a significant broadening of the main phase transition peak, whereas the peak corresponding to the pretransition disappears. We have performed quasielastic neutron scattering (QENS) measurements on DMPC vesicles with various concentrations of aToc at 280, 293, and 310 K. We have found that aToc affects both the lateral diffusion and the internal motions of the lipid molecules. Below the main phase transition temperature inclusion of aToc accelerates both the lateral and the internal lipid motions. On the other hand, above the main phase transition temperature the addition of aToc restricts only the internal motion, without a significant influence on the lateral motion. Our results support the finding that the location of aToc in DMPC membrane is deep within the bilayer.

Read More

Is vitamin E an anti-allergic compound?

Caraffa AL, Varvara G, Spinas E, Kritas SK, Lessiani G, Ronconi G, Saggini A, Antinolfi P, Frydas I, De Tommaso Morrison MC, Conti P.

J Biol Regul Homeost Agents. 2016 Jan-Mar;30(1):11-5. Review.

Abstract

Vitamin E is found in eight forms in nature which include four tocopherols (alpha, beta, gamma and delta) and four tocotrianols (alpha, beta, gamma and delta). The classic effect of vitamin E is to reduce and prevent oxygen damage to the tissue and is useful for the treatment of pain, inflammation and allergic reactions. In addition to antioxidant activity, vitamin E also has a number of different and related functions. It protects against cancer, improves immune response, lowers the incidence of infectious diseases, cardiovascular diseases and is protective in allergy and asthma risk, and other disorders. Vitamin E increases n-6 polyunsaturated fatty acid (PUFA) and decreases n-3 PUFA, an effect that diminishes asthma and allergic diseases. Moreover, vitamin E regulates vascular cell adhesion molecule-1 (VCAM-1)-dependent leukocyte migration through its oxidant and non-antioxidant effect. Furthermore, vitamin E modulates the endothelial function by altering VCAM-1-induced oxidative activation of endothelial cell PKCα. However, vitamin E is not consistently associated with asthma and/or allergy, and in some cases there are conflicting results on allergy and inflammatory diseases. The association of vitamin E and allergy appears to be very complex, and further study needs to clarify this dilemma.

Read More

Pleiotropic Effects of Tocotrienols and Quercetin on Cellular Senescence: Introducing the Perspective of Senolytic Effects of Phytochemicals.

Malavolta M, Pierpaoli E, Giacconi R, Costarelli L, Piacenza F, Basso A, Cardelli M, Provinciali M.

Curr Drug Targets. 2016;17(4):447-59. Review.

Abstract

The possibility to target cellular senescence with natural bioactive substances open interesting therapeutic perspective in cancer and aging. Engaging senescence response is suggested as a key component for therapeutic intervention in the eradication of cancer. At the same time, delaying senescence or even promote death of accumulating apoptosis-resistant senescent cells is proposed as a strategy to prevent age related diseases. Although these two desired outcome present an intrinsic dichotomy, there are examples of promising natural compounds that appear to satisfy all the requirements to develop senescence- targeted health promoting nutraceuticals. Tocotrienols (T3s) and quercetin (QUE), albeit belonging to different phytochemical classes, display similar and promising effects “in vitro” when tested in normal and cancer cells. Both compounds have been shown to induce senescence and promote apoptosis in a multitude of cancer lines. Conversely, they display senescence delaying activity in primary cells and rejuvenating effects in senescent cells. More recently, QUE has been shown to display senolytic effects in some primary senescent cells, likely as a consequence of its inhibitory effects on specific anti-apoptotic genes (i.e. PI3K and other kinases). Senolytic activity has not been tested for T3s but part of metabolic and apoptotic pathways affected by these compounds in cancer cells overlap with those of QUE. This suggests that the rejuvenating effects of T3s and QUE on pre-senescent and senescent primary cells might be the net results of a senolytic activity on senescent cells and a selective survival of a sub-population of non-senescent cells in the culture. The meaning of this hypothesis in the context of adjuvant therapy of cancer and preventive anti-aging strategies with QUE or T3s is discussed.

Read More

Antiproliferative effects of γ-tocotrienol are associated with lipid raft disruption in HER2-positive human breast cancer cells.

Alawin OA, Ahmed RA, Ibrahim BA, Briski KP, Sylvester PW.

J Nutr Biochem. 2016 Jan;27:266-77. doi: 10.1016/j.jnutbio.2015.09.018.

Abstract

A large percentage of human breast cancers are characterized by excessive or aberrant HER2 activity. Lipid rafts are specialized microdomains within the plasma membrane that are required for HER2 activation and signal transduction. Since the anticancer activity of γ-tocotrienol is associated with suppression in HER2 signaling, studies were conducted to examine the effects of γ-tocotrienol on HER2 activation within the lipid raft microdomain in HER2-positive SKBR3 and BT474 human breast cancer cells. Treatment with 0-5μM γ-tocotrienol induced a significant dose-dependent inhibition in cancer cell growth after a 5-day culture period, and these growth inhibitory effects were associated with a reduction in HER2 dimerization and phosphorylation (activation). Phosphorylated HER2 was found to be primarily located in the lipid raft microdomain of the plasma membrane in vehicle-treated control groups, whereas γ-tocotrienol treatment significantly inhibited this effect. Assay of plasma membrane subcellular fractions showed that γ-tocotrienol also accumulates exclusively within the lipid raft microdomain. Hydroxypropyl-β-cyclodextrin (HPβCD) is an agent that disrupts lipid raft integrity. Acute exposure to 3mM HPβCD alone had no effect, whereas an acute 24-h exposure to 20μM γ-tocotrienol alone significantly decreased SKBR3 and BT474 cell viability. However, combined treatment with these agents greatly reduced γ-tocotrienolaccumulation in the lipid raft microdomain and cytotoxicity. In summary, these findings demonstrate that the anticancer effects of γ-tocotrienol are associated with its accumulation in the lipid raft microdomain and subsequent interference with HER2 dimerization and activation in SKBR3 and BT474 human breast cancer cells.

Read More

Vitamin E derivatives: a patent review (2010 – 2015).

Koufaki M.

Expert Opin Ther Pat. 2016;26(1):35-47. doi: 10.1517/13543776.2016.1106476. Review.

Abstract

The vitamin E family consists of four tocopherols and four tocotrienols. α-Tocopherol is the most studied member of this family for its antioxidant and non-antioxidant properties, while tocotrienols have attracted recent research interest. The structural motifs of the vitamin E family and specifically the chroman moiety, are amenable to various modifications in order to improve their bioactivities towards numerous therapeutic targets. This review includes the patent literature from 2010 – 2015 related to vitamin E derivatives and it is focused on 2-, 5- or 6-substituted chroman analogues. The patent search was performed using Reaxys® and esp@cenet. The chroman moiety of vitamin E is a privileged structure and an essential pharmacophore which inspired organic chemists to synthesize new analogues with improved bioactivities. Modifications at the 2- and 5- positions of the chroman ring resulted in very interesting active compounds in cellular and animal models of diseases related to oxidative stress. More recent publications and patents reported 6-substituted chromans as anticancer agents in vitro and in vivo. Additionally, an emerging interest is observed towards the use of vitamin E analogues incorporated in drug delivery systems and for medical imaging as contrast agents or fluorescent probes.

Read More

Estrogen receptor-mediated effect of δ-tocotrienol prevents neurotoxicity and motor deficit in the MPTP mouse model of Parkinson’s disease.

Nakaso K, Horikoshi Y, Takahashi T, Hanaki T, Nakasone M, Kitagawa Y, Koike T, Matsura T.

Neurosci Lett. 2016 Jan 1;610:117-22. doi: 10.1016/j.neulet.2015.10.062.

Abstract

Neuroprotection following signal transduction has been investigated recently as a strategy for Parkinson’s disease (PD) therapy. While oxidative stress is important in the pathogenesis of PD, neuroprotection using antioxidants such as α-tocopherol have not been successful. δ-tocotrienol (δT3), a member of the vitamin E family, has received attention because of activities other than its antioxidative effects. In the present study, we examined the estrogen receptor-β (ERβ)-mediated neuroprotective effects of δT3 in a mouse model of PD. ERβ is expressed in neuronal cells, including dopaminergic neurons in the substantia nigra. Daily forced oral administration of δT3 inhibited the loss of dopaminergic neurons in the substantia nigra. In addition, the ER inhibitor tamoxifen canceled the neuroprotective effects of δT3. Moreover, δT3 administration improved the performance of the PD mice in the wheel running activity, while tamoxifen inhibited this improved performance. These results suggest that the oral administration of δT3 may be useful in the treatment of PD patients, and ERβ may be a candidate target for the neuroprotection activity of δT3.

Read More