γ-Tocotrienol reduces human airway smooth muscle cell proliferation and migration.

Harada T1, Yamasaki A, Chikumi H, Hashimoto K, Okazaki R, Takata M1, Fukushima T, Watanabe M, Kurai J, Halayko AJ, Shimizu E.

Pulm Pharmacol Ther. 2015 May 5. pii: S1094-5539(15)00045-0.

Abstract

AIMS:

Vitamin E is an antioxidant that occurs in 8 different forms (α, β, γ, and δ tocopherol and tocotrienol). Clinical trials of tocopherol supplementation to assess the impact of antioxidant activity in asthma have yielded equivocal results. Tocotrienol exhibits greater antioxidant activity than tocopherol in several biological phenomena in vivo and in vitro. We tested the effect of tocotrienol on human airway smooth muscle (ASM) cell growth and migration, both of which mediate airway remodeling in asthma.

MAIN METHODS:

We measured platelet-derived growth factor-BB (PDGF-BB)-induced ASM cell proliferation and migration by colorimetric and Transwell migration assays in the presence and absence of γ-tocotrienol (an isoform of tocotrienol).

KEY FINDINGS:

PDGF-BB-induced ASM cell proliferation and migration were inhibited by γ-tocotrienol. This effect was associated with inhibition of RhoA activation, but it had no effect on p42/p44 mitogen-activated protein kinase (MAPK) or Akt1 activation. We confirmed that pharmacological inhibition of Rho kinase activity was sufficient to inhibit PDGF-BB-induced ASM cell proliferation and migration.

SIGNIFICANCE:

γ-Tocotrienol could impart therapeutic benefits for airway remodeling in asthma by inhibiting human ASM cell proliferation and migration.

Read More

Tocotrienol-rich fraction prevents cellular aging by modulating cell proliferation signaling pathways.

Khor SC, Mohd Yusof YA, Wan Ngah WZ, Makpol S.

Clin Ter. 2015 Mar-Apr;166(2):e81-90.

Abstract

BACKGROUND AND OBJECTIVE:

Vitamin E has been suggested as nutritional intervention for the prevention of degenerative and age-related diseases. In this study, we aimed to elucidate the underlying mechanism of tocotrienol-rich fraction (TRF) in delaying cellular aging by targeting the proliferation signaling pathways in human diploid fibroblasts (HDFs).

MATERIALS AND METHODS:

Tocotrienol-rich fraction was used to treat different stages of cellular aging of primary human diploid fibroblasts viz. young (passage 6), pre-senescent (passage 15) and senescent (passage 30). Several selected targets involved in the downstream of PI3K/AKT and RAF/MEK/ERK pathways were compared in total RNA and protein.

RESULTS:

Different transcriptional profiles were observed in young, pre-senescent and senescent HDFs, in which cellular aging increased AKT, FOXO3, CDKN1A and RSK1 mRNA expression level, but decreased ELK1, FOS and SIRT1 mRNA expression level. With tocotrienol-rich fraction treatment, gene expression of AKT, FOXO3, ERK and RSK1 mRNA was decreased in senescent cells, but not in young cells. The three down-regulated mRNA in cellular aging, ELK1, FOS and SIRT1, were increased with tocotrienol-rich fraction treatment. Expression of FOXO3 and P21Cip1 proteins showed up-regulation in senescent cells but tocotrienol-rich fraction only decreased P21Cip1 protein expression in senescent cells.

CONCLUSIONS:

Tocotrienol-rich fraction exerts gene modulating properties that might be responsible in promoting cell cycle progression during cellular aging.

Read More

The biological effects of tocotrienol on bone: a review on evidence from rodent models.

Chin KY, Ima-Nirwana S.

Drug Des Devel Ther. 2015 Apr 8;9:2049-61.

Abstract

Osteoporosis causes significant health care and economic burden to society, leading to a relentless search for effective preventive agents.Tocotrienol, a member of the vitamin E family, has demonstrated promising potential as an osteoporosis-preventing agent. This review summarizes evidence on the effects of tocotrienol on bone in animal models. Techniques used to examine the effects of tocotrienol on bone in animals included bone histomorphometry, X-ray microtomography, dual-energy X-ray absorptiometry, bone turnover markers, bone calcium content, and biomechanical strength. Tocotrienol was shown to improve osteoblast number, bone formation, mineral deposition, and bone microarchitecture in osteopenic rats. It also decreased osteoclast number and bone erosion in the rats. Tocotrienol supplementation resulted in an improvement in bone mineral density, although biomechanical strength was not significantly altered in the rats. The beneficial effects of tocotrienol on bone can be attributed to its role as an antioxidant, anti-inflammatory agent, suppressor of the mevalonate pathway, and modulator of genes favorable to bone formation.

Read More

Gamma-tocotrienol treatment increased peroxiredoxin-4 expression in HepG2 liver cancer cell line

Abdul Rahman Sazli F, Jubri Z, Abdul Rahman M, Karsani SA, Md Top AG, Wan Ngah WZ.

BMC Complement Altern Med. 2015 Mar 13;15:64

Abstract

BACKGROUND:

To determine the antiproliferative effect of gamma-tocotrienol (GTT) treatment on differential protein expression in HepG2 cells.

METHODS:

HepG2 cells were treated with 70 μM GTT for 48 hours and differentially expressed protein spots were determined by two-dimensional electrophoresis (2DE), identified by MALDI-TOF mass spectrometer (MS) and validated by quantitative real-time polymerase chain reaction (qRT-PCR).

RESULTS:

GTT treatment on HepG2 cells showed a total of five differentially expressed proteins when compared to their respective untreated cells where three proteins were down-regulated and two proteins were up-regulated. One of these upregulated proteins was identified as peroxiredoxin-4 (Prx4). Validation by qRT-PCR however showed decreased expression of Prx4 mRNA in HepG2 cells following GTT treatment.

CONCLUSIONS:

GTT might directly influence the expression dynamics of peroxiredoxin-4 to control proliferation in liver cancer.

Read More

Short-term effects of a combined nutraceutical of insulin-sensitivity, lipid level and indexes of liver steatosis: a double-blind, randomized, cross-over clinical trial

Cicero AF, Rosticci M, Parini A, M M, Urso R, Grandi E, Borghi C.

Nutr J. 2015 Mar 28;14(1):30.

Abstract

BACKGROUND:

Overweight subjects easily develop alterations of the glucose and lipid metabolism and are exposed to an increased cardiometabolic risk. This condition is potentially reversible through the improvement of dietary and behavioural habits. However, a well-assembled nutraceutical would be a useful tool to better improve the metabolic parameters associated to overweight and insulin resistance.

METHODS:

To evaluate the effect of a combined nutraceutical containing berberine, chlorogenic acid and tocotrienols, we performed a double blind, cross-over designed trial versus placebo, in 40 overweight subjects with mixed hyperlipidaemia. After the first 8 weeks of treatment (or placebo), patients were asked to observe a 2-week washout period, and they were then assigned to the alternative treatment for a further period of 8 weeks. Clinical and laboratory data associated to hyperlipidaemia and insulin resistance have been obtained at the baseline, at the end of the first treatment period, after the washout, and again after the second treatment period.

RESULTS:

Both groups experienced a significant improvement of anthropometric and biochemical parameters versus baseline. However, total cholesterol, LDL cholesterol, triglycerides, non-HDL cholesterol, fasting insulin, HOMA-IR, GOT and Lipid Accumulation Product decreased more significantly in the nutraceutical group versus placebo.

CONCLUSIONS:

This combination seems to improve a large number of metabolic and liver parameters on the short-term in overweight subjects. Further studies are needed to confirm these observations on the middle- and long-term.

Read More

A review of characterization of tocotrienols from plant oils and foods.

Ahsan H, Ahad A, Siddiqui WA.

J Chem Biol. 2015 Jan 20;8(2):45-59.

Abstract

Tocotrienols, members of the vitamin E family, are natural compounds found in a number of vegetable oils, wheat germ, barley and certain types of nuts and grains. Vegetable oils provide the best sources of these vitamin E forms, particularly palm oil and rice bran oil contain higher amounts oftocotrienols. Other sources of tocotrienols include grape fruit seed oil, oats, hazelnuts, maize, olive oil, buckthorn berry, rye, flax seed oil, poppy seed oil and sunflower oil. Tocotrienols are of four types, viz. alpha (α), beta (β), gamma (γ) and delta (δ). Unlike tocopherols, tocotrienols are unsaturated and possess an isoprenoid side chain. A number of researchers have developed methods for the extraction, analysis, identification and quantification of different types of vitamin E compounds. This article constitutes an in-depth review of the chemistry and extraction of the unsaturated vitamin E derivatives, tocotrienols, from various sources using different methods. This review article lists the different techniques that are used in the characterization and purification of tocotrienols such as soxhlet and solid-liquid extractions, saponification method, chromatography (thin layer, column chromatography, gas chromatography, supercritical fluid, high performance), capillary electrochromatography and mass spectrometry. Some of the methods described were able to identify one form or type while others could analyse all the analogues of tocotrienolmolecules. Hence, this article will be helpful in understanding the various methods used in the characterization of this lesser known vitamin E variant.

Read More

Gamma-Tocotrienol Slows Diet-Induced Obesity and Improves Insulin Resistance in Animal Model

berries

Researchers from the University of Florida report that gamma-tocotrienol from red palm oil accumulates in adipose tissues, slowing down high-fat diet-induced obesity and improving insulin sensitivity in mice by inhibiting adipose inflammation.

In the new study, Dr. SK Chung and her team investigated the effects of gamma-tocotrienol on early onset obesity, inflammation, and insulin resistance in mice. The mice were randomly assigned to three different diet groups – low fat (LF), high fat (HF) with 60% calories from fat, or HF mixed with 0.05% gamma-tocotrienol, one of eight different compounds that make up natural vitamin E. Measurements of gamma-tocotrienol concentrations in blood and adipose tissue; effects of gamma-tocotrienol on body weight gain, adipose volume, fasting blood glucose, insulin level and various inflammatory biomarkers were recorded.

Read More

Thrombomodulin Contributes to Gamma Tocotrienol-Mediated Lethality Protection and Hematopoietic Cell Recovery in Irradiated Mice.

Pathak R, Shao L, Ghosh SP, Zhou D, Boerma M, Weiler H, Hauer-Jensen M

PLoS One. 2015 Apr 10;10(4):e0122511

Abstract

Systemic administration of recombinant thrombomodulin (TM) confers radiation protection partly by accelerating hematopoietic recovery. The uniquely potent radioprotector gamma tocotrienol (GT3), in addition to being a strong antioxidant, inhibits the enzyme hydroxy-methyl-glutaryl-coenzyme A reductase (HMGCR) and thereby likely modulates the expression of TM. We hypothesized that the mechanism underlying the exceptional radioprotective properties of GT3 partly depends on the presence of endothelial TM. In vitro studies confirmed that ionizing radiation suppresses endothelial TM (about 40% at 4 hr after 5 Gy γ-irradiation) and that GT3 induces TM expression (about 2 fold at the mRNA level after 5 μM GT3 treatment for 4 hr). In vivo survival studies showed that GT3 was significantly more effective as a radioprotector in TM wild type (TM+/+) mice than in mice with low TM function (TMPro/-). After exposure to 9 Gy TBI, GT3 pre-treatment conferred 85% survival in TM+/+ mice compared to only 50% in TMPro/-. Thus, GT3-mediated radiation lethality protection is partly dependent on endothelial TM. Significant post-TBI recovery of hematopoietic cells, particularly leukocytes, was observed in TM+/+ mice (p = 0.003), but not in TMPro/- mice, despite the fact that GT3 induced higher levels of granulocyte colony stimulating factor (G-CSF) in TMPro/- mice (p = 0.0001). These data demonstrate a critical, G-CSF-independent, role for endothelial TM in GT3-mediated lethality protection and hematopoietic recovery after exposure to TBI and may point to new strategies to enhance the efficacy of current medical countermeasures in radiological/nuclear emergencies.

Read More

δ-Tocotrienol Induces Human Bladder Cancer Cell Growth Arrest, Apoptosis and Chemosensitization through Inhibition of STAT3 Pathway.

Ye C, Zhao W, Li M, Zhuang J, Yan X, Lu Q, Chang C, Huang X, Zhou J, Xie B, Zhang Z, Yao X, Yan J, Guo H.

PLoS One. 2015 Apr 7;10(4):e0122712.

Abstract

Vitamin E intake has been implicated in reduction of bladder cancer risk. However, the mechanisms remain elusive. Here we reported that δ-tocotrienol (δ-T3), one of vitamin E isomers, possessed the most potent cytotoxic capacity against human bladder cancer cells, compared with other Vitamin E isomers. δ-T3 inhibited cancer cell proliferation and colonogenicity through induction of G1 phase arrest and apoptosis. Western blotting assay revealed that δ-T3 increased the expression levels of cell cycle inhibitors (p21, p27), pro-apoptotic protein (Bax) and suppressed expression levels of cell cycle protein (Cyclin D1), anti-apoptotic proteins (Bcl-2, Bcl-xL and Mcl-1), resulting in the Caspase-3 activation and cleavage of PARP. Moreover, the δ-T3 treatment inhibited ETK phosphorylation level and induced SHP-1 expression, which was correlated with downregulation of STAT3 activation. In line with this, δ-T3 reduced the STAT3 protein level in nuclear fraction, as well as its transcription activity. Knockdown of SHP-1 partially reversed δ-T3-induced cell growth arrest. Importantly, low dose of δ-T3 sensitized Gemcitabine-induced cytotoxic effects on human bladder cancer cells. Overall, our findings demonstrated, for the first time, the cytotoxic effects of δ-T3 on bladder cancer cells and suggest that δ-T3 might be a promising chemosensitization reagent for Gemcitabine in bladder cancer treatment.

Read More

γ-Tocotrienol-induced endoplasmic reticulum stress and autophagy act concurrently to promote breast cancer cell death.

Tiwari RV, Parajuli P, Sylvester PW.

Biochem Cell Biol. 2015 Mar 12:1-15.

Abstract

The anticancer effects of γ-tocotrienol are associated with the induction of autophagy and endoplasmic reticulum (ER) stress-mediated apoptosis, but a direct relationship between these events has not been established. Treatment with 40 μmol/L of γ-tocotrienol caused a time-dependent decrease in cancer cell viability that corresponds to a concurrent increase in autophagic and endoplasmic reticulum (ER) stress markers in MCF-7 and MDA-MB-231 human breast cancer cells. γ-Tocotrienol treatment was found to cause a time-dependent increase in early phase (Beclin-1, LC3B-II) and late phase (LAMP-1 and cathepsin-D) autophagy markers, and pretreatment with autophagy inhibitors Beclin-1 siRNA, 3-MA or Baf1 blocked these effects. Furthermore, blockage of γ-tocotrienol-induced autophagy with Beclin-1 siRNA, 3-MA, or Baf1 induced a modest, but significant, reduction in γ-tocotrienol-induced cytotoxicity. γ-Tocotrienol treatment was also found to cause a decrease in mitogenic Erk1/2 signaling, an increase in stress-dependent p38 and JNK1/2 signaling, as well as an increase in ER stress apoptotic markers, including phospho-PERK, phospho-eIF2α, Bip, IRE1α, ATF-4, CHOP, and TRB3. In summary, these finding demonstrate that γ-tocotrienol-induced ER stress and autophagy occur concurrently, and together act to promote human breast cancer cell death.

Read More