The objective of this study was to optimize a method to investigate the occurrence and to quantify the full isomeric composition of vitamin E (α-, β-, γ- and δ-tocopherols and tocotrienols) in 6 vegetables (raw and cooked), 3 herbs/spices, raw and cooked eggs, vegetable oils (canola, olive and soybean), flaxseed and sorghum (flour and seeds) and soy (flour) by HPLC with fluorescence detection. Different conditions of extraction and analysis were tested. The optimized method consisted of direct extraction with solvent (hexane:ethyl acetate, 85:15, v/v). For analysis normal phase column was used with mobile phase consisting of hexane:isopropanol:acetic acid (98.9:0.6:0.5) with isocratic elution and fluorescence detection. Excellent separation of all isomers was obtained along with adequate quantification in the foods analyzed. Recovery rates of standards ranged from 91.3 to 99.4%. The linearity range for each isomer varied from 2.5 to 137.5 ng/mL (R² greater than 0.995 in all cases). Detection limits ranged from 21.0 to 48.0 ng/mL for tocopherols and from 56.0 to 67.0 ng/mL for tocotrienols, while quantification limits ranged from 105.0 to 240.0 ng/mL for tocopherols and from 280.0 to 335.0 ng/mL for tocotrienols. The optimized method was considered simple, fast and reliable, and also preserved vitamin E isomers when compared to validated methods involving saponification.

Delivery of the vitamin E compound tocotrienol to cancer cells

Dufès C.

Ther Deliv. 2011 Nov;2(11):1385-9.

Tocotrienol, a member of the vitamin E family of compounds, is currently receiving increased attention owing to its highly promising anticancer effects. However, its potential in cancer therapy is limited by its poor bioavailability and its inability to specifically reach tumors at therapeutic concentrations after intravenous administration. In order to address these problems, various delivery strategies have been proposed, such as the inclusion of tocotrienol in gamma-cyclodextrins, prodrugs and emulsions, and entrapment in lipid nanoparticles and vesicles. Among these approaches, we have demonstrated that the entrapment of tocotrienol within vesicles bearing transferrin, whose receptors are overexpressed on numerous cancer cells, significantly improved the uptake by cancer cells overexpressing transferrin receptors. Consequently, the intravenous administration of tocotrienol entrapped in transferrin-bearing vesicles led to tumor regression and even complete tumor suppression in some cases in a murine tumor model, as well as improvement of animal survival. Transferrin-bearing vesicles are therefore highly promising for the delivery oftocotrienol to cancer cells in vitro and in vivo, and should be further investigated to optimize the anticancer therapeutic effect of tocotrienol.

Vitamin E homologues, specifically tocotrienols, have been shown to have favorable effects on bone. They possess properties that are indicative of anti-resorptive activity, suggesting the potential for vitamin E in preventing bone loss. To investigate the anti-resorptive activity of the various vitamin E homologues, we cultured human osteoclasts from blood-derived CD14+ cells on collagen, dentin, and calcium phosphate substrates, with some samples supplemented with vitamin E homologues in their cell culture medium. These were compared to the clinically used bisphosphonate, pamidronate. Compounds were either added at the start of culture to study effects on osteoclast formation, or at the start of osteoclastic resorption to determine their effects on activity. The alpha- and gamma-tocotrienol isomers inhibited osteoclast formation without consequent reduction in total cell number. Only gamma-tocotrienol inhibited osteoclast activity without toxicity. Gamma-tocotrienol was the most potent inhibitor of both osteoclast formation and activity and requires further investigation into its anti-resorptive effects on bone.

Comparison of antioxidative and antifibrotic effects of α-tocopherol with those of tocotrienol-rich fraction in a rat model of chronic pancreatitis

Jiang F, Liao Z, Hu LH, Du YQ, Man XH, Gu JJ, Gao J, Gong YF, Li ZS.

Pancreas. 2011 Oct;40(7):1091-6.

Objectives: The α-tocopherol and tocotrienol-rich fraction (TRF) are considered effective antioxidants. This study aimed to compare the antioxidative and antifibrotic effects of α-tocopherol and TFR in dibutylin dichloride (DBTC)-induced chronic pancreatitis (CP) rats.

Methods: Oral administration of α-tocopherol and TFR (both 800 mg/kg per day) started the next day after DBTC (8 mg/kg) infusion into the tail vein for 4 weeks. Histological examination, Sirius red staining, and measurement of the contents of hydroxyproline and malondialdehyde of the pancreas were performed to evaluate pancreatic damage and fibrosis. Immunohistochemical analysis of α-smooth muscle actin and real-time reverse transcription polymerase chain reaction for transforming growth factor-β1 (TGF-β1) and collagen-α1(I) were performed to evaluate the activation of pancreatic stellate cells and the mRNA levels of fibrosis-related genes, respectively.

Results: Both α-tocopherol and TRF reduced oxidative stress, ameliorated inflammation and fibrosis, and down-regulated the mRNA expression of TGF-β1 and collagen-α1(I) in DBTC-induced CP. The TRF was superior to α-tocopherol in alleviating inflammation and fibrosis and down-regulating TGF-β1 mRNA expression.

Conclusion: Oral administration of α-tocopherol and TRF improves pancreatic inflammation and fibrosis in DBTC-induced CP rats, with TRF being more effective than α-tocopherol. Therefore, TRF may be a novel option for alleviating inflammation and, particularly, the fibrotic process in CP.

Background: Resveratrol, a constituent of red wine, and γ-tocotrienol, a constituent of palm oil are important for cardioprotection. Although MicroRNAs are known regulators for genes involved in cardiac remodeling the regulatory pathway involving microRNA has not been studied so far.

Methods: We explored the cardioprotection by resveratrol, longevinex and γ tocotrienol in ischemia/reperfusion(I/R) model of rat and determined miRNA profile from isolated RNA. Systemic analyses of miRNA array and theirs targets were determined using a number of computational approaches.

Results: Resveratrol and γ-tocotrienol, either alone or in combination, modulated the expression pattern of miRNAs close to the control level based on PCA analyses. Differential expression was observed in over 75 miRNAs, some of them, such as miR-21 and miR-20b (antiangiogenic) were previously implicated in cardiac remodeling. The target genes for the highest differentially expressed miRNA include genes of various molecular function such as TGFβ1-Smad3 signaling pathway, inflammation and their transcription factors, which may play key role in reducing I/R injury. Administration of antagomiR-20 attenuated I/R induced VEGF and HIF1α level.

Conclusion: All the interventions treated for 3 weeks lead to significant cardioprotection against ischemia/reperfusion injury. A unique signature of miRNA profile is observed in control heart pretreated with resveratrol or γ-tocotrienol. We have determined specific group of miRNA in heart that have altered during IR injuries. Most of those altered microRNA expressions modulated close to their basal level in resveratrol or longevinex treated I/R rat. Interestingly, resveratrol and γ-tocotrienol resulted in synergestic action.

The anti-inflammatory role of vitamin E in prevention of osteoporosis

Nazrun AS, Norazlina M, Norliza M, Nirwana SI.

Adv Pharmacol Sci. 2012;2012:142702. Epub 2011 Nov 17.

There is growing evidence that inflammation may be one of the causal factors of osteoporosis. Several cytokines such as IL-1, IL-6, RANKL, OPG, and M-CSF were implicated in the pathogenesis of osteoporosis. These cytokines are important determinants of osteoclast differentiation and its bone resorptive activity. Anticytokine therapy using cytokine antagonists such as IL-receptor antagonist and TNF-binding protein was able to suppress the activity of the respective cytokines and prevent bone loss. Several animal studies have shown that vitamin E in the forms of palm-derived tocotrienol and α-tocopherol may prevent osteoporosis in rat models by suppressing IL-1 and IL-6. Free radicals are known to activate transcription factor NFκB which leads to the production of bone resorbing cytokines. Vitamin E, a potent antioxidant, may be able to neutralise free radicals before they could activate NFκB, therefore suppressing cytokine production and osteoporosis. Vitamin E has also been shown to inhibit COX-2, the enzyme involved in inflammatory reactions. Of the two types of vitamin E studied, tocotrienol seemed to be better than tocopherol in terms of its ability to suppress bone-resorbing cytokines.

Vitamin E tocotrienols protect the heart and prevent metabolic syndrome

John Phillip

Few people pay attention to the importance of vitamin E, much less to the multi-fractioned mirror image versions of the vitamin known as isomers (consisting of tocotrienols and tocopherols). Vitamin E has long been known as a nutrient that may play a role in maintaining heart health, but extensive new research explains that the vitamin in all its potent forms is required to dramatically lower the risk of heart disease and heart attack.

Read Full Article Here

Inhibition of cell growth and induction of apoptosis in non-small cell lung cancer cells by delta-tocotrienol is associated with notch-1 down-regulation

Ji X, Wang Z, Geamanu A, Sarkar FH, Gupta SV.

J Cell Biochem. 2011 Oct;112(10):2773-83.

Lung cancer is the leading cause of death among all cancers. Non-small cell lung cancer accounts for 80% of lung cancer with a 5-year survival rate of 16%. Notch pathway, especially Notch-1 is up-regulated in a subgroup of non-small cell lung cancer patients. Since Notch-1 signaling plays an important role in cell proliferation, differentiation, and apoptosis, down-regulation of Notch-1 may exert anti-tumor effects. The objective of this study was to investigate whether delta-tocotrienol, a naturally occurring isoform of Vitamin E, inhibits non-small cell lung cancer cell growth via Notch signaling. Treatment with delta-tocotrienol resulted in a dose and time dependent inhibition of cell growth, cell migration, tumor cell invasiveness, and induction of apoptosis. Real-time RT-PCR and western blot analysis showed that antitumor activity by delta-tocotrienol was associated with a decrease in Notch-1, Hes-1, Survivin, MMP-9, VEGF, and Bcl-XL expression. In addition, there was a decrease in NF-κB-DNA binding activity. These results suggest that down-regulation of Notch-1, via inhibition of NF-κB signaling pathways by delta-tocotrienol, could provide a potential novel approach for prevention of tumor progression in non-small cell lung cancer.

Suppression of nitric oxide induction and pro-inflammatory cytokines by novel proteasome inhibitors in various experimental models

Qureshi AA, Tan X, Reis JC, Badr MZ, Papasian CJ, Morrison DC, Qureshi N.

Lipids Health Dis. 2011 Oct 12;10:177.

Background: Inflammation has been implicated in a variety of diseases associated with ageing, including cancer, cardiovascular, and neurologic diseases. We have recently established that the proteasome is a pivotal regulator of inflammation, which modulates the induction of inflammatory mediators such as TNF-α, IL-1, IL-6, and nitric oxide (NO) in response to a variety of stimuli. The present study was undertaken to identify non-toxic proteasome inhibitors with the expectation that these compounds could potentially suppress the production of inflammatory mediators in ageing humans, thereby decreasing the risk of developing ageing related diseases. We evaluated the capacity of various proteasome inhibitors to suppress TNF-α, NO and gene suppression of TNF-α, and iNOS mRNA, by LPS-stimulated macrophages from several sources. Further, we evaluated the mechanisms by which these agents suppress secretion of TNF-α, and NO production. Over the course of these studies, we measured the effects of various proteasome inhibitors on the RAW 264.7 cells, and peritoneal macrophages from four different strains of mice (C57BL/6, BALB/c, proteasome double subunits knockout LMP7/MECL-1-/-, and peroxisome proliferator-activated receptor-α,-/- (PPAR-α,-/-) knockout mice. We also directly measured the effect of these proteasome inhibitors on proteolytic activity of 20S rabbit muscle proteasomes.

Results: There was significant reduction of chymotrypsin-like activity of the 20S rabbit muscle proteasomes with dexamethasone (31%), mevinolin (19%), δ-tocotrienol (28%), riboflavin (34%), and quercetin (45%; P < 0.05). Moreover, quercetin, riboflavin, and δ-tocotrienol also inhibited chymotrypsin-like, trypsin-like and post-glutamase activities in RAW 264.7 whole cells. These compounds also inhibited LPS-stimulated NO production and TNF-α, secretion, blocked the degradation of P-IκB protein, and decreased activation of NF-κB, in RAW 264.7 cells. All proteasome inhibitors tested also significantly inhibited NO production (30% to 60% reduction) by LPS-induced thioglycolate-elicited peritoneal macrophages derived from all four strains of mice. All five compounds also suppressed LPS-induced TNF-α, secretion by macrophages from C57BL/6 and BALB/c mice. TNF-α, secretion, however, was not suppressed by any of the three proteasome inhibitors tested (δ-tocotrienol, riboflavin, and quercetin) with LPS-induced macrophages from LMP7/MECL-1-/- and PPAR-α,-/- knockout mice. Results of gene expression studies for TNF-α, and iNOS were generally consistent with results obtained for TNF-α, protein and NO production observed with four strains of mice.

Conclusions: Results of the current study demonstrate that δ-tocotrienol, riboflavin, and quercetin inhibit NO production by LPS-stimulated macrophages of all four strains of mice, and TNF-α, secretion only by LPS-stimulated macrophages of C57BL/6 and BALB/c mice. The mechanism for this inhibition appears to be decreased proteolytic degradation of P-IκB protein by the inhibited proteasome, resulting in decreased translocation of activated NF-κB to the nucleus, and depressed transcription of gene expression of TNF-α, and iNOS. Further, these naturally-occurring proteasome inhibitors tested appear to be relatively potent inhibitors of multiple proteasome subunits in inflammatory proteasomes. Consequently, these agents could potentially suppress the production of inflammatory mediators in ageing humans, thereby decreasing the risk of developing a variety of ageing related diseases.

During the last two decades, several exciting reports have provided many advances in the role and biosynthesis of l-ascorbic acid (AsA) and tocochromanols, including tocopherols and tocotrienols, in higher plants. There are increasing bodies of experimental evidence that demonstrate that AsA and tocochromanols (especially tocopherols) play an important role as antioxidants and nutrients in mammals and photosynthetic organisms and are also involved in plant responses to stimuli. Although AsA and tocochromanol biosynthesis pathways have been well characterized using Arabidopsis, these pathways are still poorly understood in rice, which is an economically important monocot cereal crop. In this study using computational analysis of sequenced rice genome, we identified eight and seven potential non-redundant members involved in AsA and tocochromanol biosynthetic pathways, respectively. The results reveal that the common feature of these gene promoters is the combination of light-responsive, hormone-responsive, and stress-responsive elements. These findings, together with expression analysis in the MPSS database, indicate that AsA and tocochromanols might be co-related with the complex signaling pathways involved in plant responses.