Reduction of radiation-induced vascular nitrosative stress by the vitamin E analog γ-tocotrienol: Evidence of a role for tetrahydrobiopterin

Berbee M, Fu Q, Boerma M, Pathak R, Zhou D, Kumar KS, Hauer-Jensen M.

Int J Radiat Oncol Biol Phys. 2011 Mar 1;79(3):884-91

Purpose: The vitamin E analog γ-tocotrienol (GT3) is a powerful radioprotector. GT3 reduces postradiation vascular peroxynitrite production, an effect dependent on inhibition of hydroxy-methylglutaryl-coenzyme A reductase. Hydroxy-methylglutaryl-coenzyme A reductase inhibitors mediate their pleiotropic effects via endothelial nitric oxide synthase that requires the cofactor tetrahydrobiopterin (BH4). This study investigated the effects of radiation on BH4 bioavailability and of GT3 on BH4 metabolism.

Methods And Materials: Mice were exposed to 8.5 Gy of total body irradiation (TBI). Lung BH4 and total biopterin concentrations were measured 0, 3.5, 7, 14, and 21 days after TBI by use of differential oxidation followed by high-performance liquid chromatography. The effect of exogenous GT3 and BH4 treatment on postradiation vascular oxidative stress and bone marrow colony-forming units were assessed in vivo. The effect of GT3 on endothelial cell apoptosis and endothelial expression of guanosine triphosphate (GTP) cyclohydrolase 1 (GTPCH), GTPCH feedback regulatory protein (GFRP), GFRP transcription, GFRP protein levels, and GFRP-GTPCH protein binding was determined in vitro.

Results: Compared with baseline levels, lung BH4 concentrations decreased by 24% at 3.5 days after TBI, an effect that was reversed by GT3. At 14 and 21 days after TBI, compensatory increases in BH4 (58% and 80%, respectively) were observed. Relative to vehicle-treated controls, both GT3 and BH4 supplementation reduced postirradiation vascular peroxynitrite production at 3.5 days (by 66% and 33%, respectively), and BH4 resulted in a 68% increase in bone marrow colony-forming units. GT3 ameliorated endothelial cell apoptosis and reduced endothelial GFRP protein levels and GFRP-GTPCH binding by decreasing transcription of the GFRP gene.

Conclusions: BH4 bioavailability is reduced in the early postradiation phase. Exogenous administration of BH4 reduces postirradiation vascular oxidative stress. GT3 potently reduces the expression of GFRP, one of the key regulatory proteins in the BH4 pathway, and may thus exert some of its beneficial effects on postradiation free radical production partly by counteracting the decrease in BH4.

Read Full Article Here

Paradoxically, meta-analysis of human randomized controlled trials revealed that natural but not synthetic α-tocopherol supplementation significantly increases all-cause mortality at 95% confidence interval. The root cause was that natural α-tocopherol supplementation significantly depressed bioavailability of other forms of vitamin E that have better chemo-prevention capability. Meta-analysis outcome demonstrated flaws in the understanding of vitamin E. Reinterpretation of reported data provides plausible explanations to several important observations. While α-tocopherol is almost exclusively secreted in chylomicrons, enterocytes secrete tocotrienols in both chylomicrons and small high-density lipoproteins. Vitamin E secreted in chylomicrons is discriminately repacked by α-tocopherol transfer protein into nascent very low-density lipoproteins in the liver. Circulating very low-density lipoproteins undergo delipidation to form intermediate-density lipoproteins and low-density lipoproteins. Uptake of vitamin E in intermediate-density lipoproteins and low-density lipoproteins takes place at various tissues via low-density lipoproteins receptor-mediated endocytosis. Small high-density lipoproteins can deliver tocotrienols upon maturation to peripheral tissues independent of α-tocopherol transfer protein action, and uptake of vitamin E takes place at selective tissues by scavenger receptor-mediated direct vitamin E uptake. Dual absorption pathways fortocotrienols are consistent with human and animal studies. α-Tocopherol depresses the bioavailability of α-tocotrienol and has antagonistic effect ontocotrienols in chemo-prevention against degenerative diseases. Therefore, it is an undesirable component for chemo-prevention. Future research directions should be focused on tocotrienols, preferably free from α-tocopherol, for optimum chemo-prevention and benefits to mankind.

δ-Tocotrienol and quercetin reduce serum levels of nitric oxide and lipid parameters in female chickens

Qureshi AA, Reis JC, Qureshi N, Papasian CJ, Morrison DC, Schaefer DM.

Lipids Health Dis. 2011 Feb 28;10:39.

Background: Chronic, low-grade inflammation provides a link between normal ageing and the pathogenesis of age-related diseases. A series of in vitro tests confirmed the strong anti-inflammatory activities of known inhibitors of NF-κB activation (δ-tocotrienol, quercetin, riboflavin, (-) Corey lactone, amiloride, and dexamethasone). δ-Tocotrienol also suppresses β-hydroxy-β-methylglutaryl coenzyme A (HMG-CoA) reductase activity (the rate-limiting step in de novo cholesterol synthesis), and concomitantly lowers serum total and LDL cholesterol levels. We evaluated these compounds in an avian model anticipating that a dietary additive combining δ-tocotrienol with quercetin, riboflavin, (-) Corey lactone, amiloride, or dexamethasone would yield greater reductions in serum levels of total cholesterol, LDL-cholesterol and inflammatory markers (tumor necrosis factor-α [TNF-α], and nitric oxide [NO]), than that attained with the individual compounds.

Results: The present results showed that supplementation of control diets with all compounds tested except riboflavin, (-) Corey lactone, and dexamethasone produced small but significant reductions in body weight gains as compared to control. (-) Corey lactone and riboflavin did not significantly impact body weight gains. Dexamethasone significantly and markedly reduced weight gain (>75%) compared to control. The serum levels of TNF-α and NO were decreased 61% – 84% (P < 0.001), and 14% – 67%, respectively, in chickens fed diets supplemented with δ-tocotrienol, quercetin, riboflavin, (-) Corey lactone, amiloride, or dexamethasone as compared to controls. Significant decreases in the levels of serum total and LDL-cholesterol were attained with δ-tocotrienol, quercetin, riboflavin and (-) Corey lactone (13% – 57%; P < 0.05), whereas, these levels were 2-fold higher in dexamethasone treated chickens as compared to controls. Parallel responses on hepatic lipid infiltration were confirmed by histological analyses. Treatments combining δ-tocotrienol with the other compounds yielded values that were lower than individual values attained with either δ-tocotrienol or the second compound. Exceptions were the significantly lower total and LDL cholesterol and triglyceride values attained with the δ-tocotrienol/(-) Corey lactone treatment and the significantly lower triglyceride value attained with the δ-tocotrienol/riboflavin treatment. δ-Tocotrienol attenuated the lipid-elevating impact of dexamethasone and potentiated the triglyceride lowering impact of riboflavin. Microarray analyses of liver samples identified 62 genes whose expressions were either up-regulated or down-regulated by all compounds suggesting common impact on serum TNF-α and NO levels. The microarray analyses further identified 41 genes whose expression was differentially impacted by the compounds shown to lower serum lipid levels and dexamethasone, associated with markedly elevated serum lipids.

Conclusion: This is the first report describing the anti-inflammatory effects of δ-tocotrienol, quercetin, riboflavin, (-) Corey lactone, amiloride, and dexamethasone on serum TNF-δ and NO levels. Serum TNF-δ levels were decreased by >60% by each of the experimental compounds. Additionally, all the treatments except with dexamethasone, resulted in lower serum total cholesterol, LDL-cholesterol and triglyceride levels. The impact of above mentioned compounds on the factors evaluated herein was increased when combined with δ-tocotrienol.

Read Full Article Here

TOCOTRIENOLS: TWENTY YEARS OF DAZZLING CARDIOVASCULAR & CANCER RESEARCH

Byron J. Richards

Numerous studies over the past two decades have clearly proven that the tocotrienol form of vitamin E is a top choice for cardiovascular protection and heart health. A recent review oftocotrienol science points out that they are also being researched for benefits to bone healthblood sugar metabolismbrain health, and cancer. Since tocotrienols offer a safe and effective way to help achieve or maintain healthy cholesterol, while simultaneously protecting your arteries, it is worthwhile to understand more about them and how they can help you with your health.

Read Full Article Here

Mechanisms Mediating the Synergistic Anticancer Effects of Combined γ-Tocotrienol and Celecoxib Treatment

Shirode AB, Sylvester PW.

J Bioanal Biomed. 2011 Jan 10;3:1-7.

Aim: To characterize the intracellular signaling mechanisms mediating the synergistic anticancer effects of combined γ-tocotrienol and celecoxibtreatment in neoplastic +SA mouse mammary epithelial cells in vitro.

Methods: +SA mammary tumor cells in different treatment groups were maintained in serum-free defined media containing 10ng/ml EGF as a mitogen and exposed to various doses of γ-tocotrienol and celecoxib alone or in combination. After a 96 hr culture period, cells were collected and whole cell lysates were subjected to Western blot analysis to determine treatment effects on intracellular signaling proteins associated with EGF-dependent mitogenesis and survival, and prostaglandin synthesis and responsiveness.

Results: Treatment with high doses of γ-tocotrienol or celecoxib alone inhibited Akt activation and downstream signaling and NFκB activation. Similar treatment with γ-tocotrienol also decreased concentration and activation of ErbB2-4 receptors, whereas celecoxib only inhibited ErbB2-4 receptor activation. In contrast, combined treatment with subeffective doses of γ-tocotrienol and celecoxib resulted in a large decrease ErbB2-4 receptor levels and activation, a decrease in PGE(2) levels, and a corresponding increase in prostaglandin EP2 and EP4 receptor levels. Combinedtreatment also induced an increase in the prostaglandin catabolizing enzyme, PGDH.

Conclusion: The synergistic anticancer effects of combined low dose γ-tocotrienol and celecoxib treatment in +SA mammary tumor cells are mediated by COX-2-dependent mechanisms associated with a suppression in PGE(2) levels, as well as, COX-2-independent mechanisms associated with a reduction in ErbB2-4 receptor levels, activation, and subsequent reduction in downstream Akt and NFκB mitogenic signaling.

Read Full Article Here

Tocochromanols are potent lipid-soluble antioxidants and essential nutrients for human health. Genetic engineering techniques were used to develop soybeans with enhanced vitamin E levels, including tocotrienols, which are not found in soybean. The gene encoding rice homogentisate geranylgeranyl transferase (HGGT) was overexpressed in soybeans using seed-specific and constitutive promoters. The association between abundance of vitamin E isomers and antioxidant activity was investigated during seed germination. With the exception of β-tocotrienol, all vitamin E isomers were detected in germinating seeds expressing OsHGGT. The antioxidant properties of germinating seed extracts were determined using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radicals and lipid peroxidation (TBARS). Compared with intact wild-type seeds, transgenic seeds showed increases in radical scavenging of 5.4-17 and 23.2-35.3% in the DPPH and ABTS assays, respectively. Furthermore, the lipid peroxidation levels were 2.0-4.5-fold lower in germinating seeds from transgenic lines than in wild-type seeds. Therefore, it appears that the antioxidant potential of transgenic oil-producing plants such as soybean, sunflower, and corn may be enhanced by overexpressing OsHGGT during seed germination.

The biosynthesis of the tocotrienol and tocopherol forms of vitamin E is initiated by prenylation of homogentisate. Geranylgeranyl diphosphate (GGDP) is the prenyl donor for tocotrienol synthesis, whereas phytyl diphosphate (PDP) is the prenyl donor for tocopherol synthesis. We have previously shown that tocotrienol synthesis is initiated in monocot seeds by homogentisate geranylgeranyl transferase (HGGT). This enzyme is related to homogentisate phytyltransferase (HPT), which catalyzes the prenylation step in tocopherol synthesis. Here we show that monocot HGGT is localized in the plastid and expressed primarily in seed endosperm. Despite the close structural relationship of monocot HGGT and HPT, these enzymes were found to have distinct substrate specificities. Barley (Hordeum vulgare cv. Morex) HGGT expressed in insect cells was six times more active with GGDP than with PDP, whereas the Arabidopsis HPT was nine times more active with PDP than with GGDP. However, only small differences were detected in the apparent Km values of barley HGGT for GGDP and PDP. Consistent with its in vitro substrate properties, barley HGGT generated a mixture of tocotrienols and tocopherols when expressed in the vitamin E-null vte2-1 mutant lacking a functional HPT. Relative levels of tocotrienols and tocopherols produced in vte2-1 differed between organs and growth stages, reflective of the composition of plastidic pools of GGDP and PDP. In addition, HGGT was able to functionally substitute for HPT to rescue vte2-1-associated phenotypes, including reduced seed viability and increased fatty acid oxidation of seed lipids. Overall, we show that monocot HGGT is biochemically distinct from HPT, but can replace HPT in important vitamin E-related physiological processes.

Natural forms of vitamin E and 13′-carboxychromanol, a long-chain vitamin E metabolite, inhibit leukotriene generation from stimulated neutrophils by blocking calcium influx and suppressing 5-lipoxygenase activity, respectively

Jiang Z, Yin X, Jiang Q.

J Immunol. 2011 Jan 15;186(2):1173-9. Epub 2010 Dec 17.

Leukotrienes generated by 5-lipoxygenase (5-LOX)-catalyzed reaction are key regulators of inflammation. In ionophore-stimulated (A23187; 1-2.5 μM) human blood neutrophils or differentiated HL-60 cells, vitamin E forms differentially inhibited leukotriene B(4) (LTB(4)) with an IC(50) of 5-20 μM for γ-tocopherol, δ-tocopherol (δT), and γ-tocotrienol, but a much higher IC(50) for α-tocopherol. 13′-Carboxychromanol, a long-chain metabolite of δT, suppressed neutrophil- and HL-60 cell-generated LTB(4) with an IC(50) of 4-7 μM and potently inhibited human recombinant 5-LOX activity with an IC(50) of 0.5-1 μM. In contrast, vitamin E forms had no effect on human 5-LOX activity but impaired ionophore-induced intracellular calcium increase and calcium influx as well as the subsequent signaling including ERK1/2 phosphorylation and 5-LOX translocation from cytosol to the nucleus, a key event for 5-LOX activation. Further investigation showed that δT suppressed cytosolic Ca(2+) increase and/or LTB(4) formation triggered by ionophores, sphingosine 1-phosphate, and lysophosphatidic acid but not by fMLP or thapsigargin, whereas 13′-carboxychromanol decreased cellular production of LTB(4) regardless of different stimuli, consistent with its strong inhibition of the 5-LOX activity. These observations suggest that δT does not likely affect fMLP receptor-mediated signaling or store depletion-induced calcium entry. Instead, we found that δT prevented ionophore-caused cytoplasmic membrane disruption, which may account for its blocking of calcium influx. These activities by vitamin E forms and long-chain carboxychromanol provide potential molecular bases for the differential anti-inflammatory effects of vitamin E forms in vivo.

BACKGROUND/OBJECTIVES: Vitamin E is an essential fat-soluble vitamin that has been shown to induce favorable effects on animal and human immune systems. The objective of this study was to assess the effects of tocotrienol-rich fraction (TRF) supplementation on immune response following tetanus toxoid (TT) vaccine challenge in healthy female volunteers.

SUBJECTS/METHODS: In this double-blinded, placebo-controlled clinical trial, participants were randomly assigned to receive either placebo (control group) or 400 mg of TRF (study group) supplementation daily. Over the 2-month period of the study, volunteers were asked to attend three clinical sessions (that is, on days 0, 28 and 56) and blood samples were obtained from the volunteers during the follow-up. On day 28, all volunteers were also vaccinated with the TT vaccine (20 Lf) intramuscularly.

RESULTS:The results from the clinical trial showed that TRF supplementation significantly increased the total vitamin E level in the plasma of the TRF-supplemented volunteers compared with the placebo group, indicating overall compliance. Volunteers supplemented with TRF showed a significantly (P < 0.05) enhanced production of interferon-γ and interleukin (IL)-4 by the mitogen or TT-stimulated leukocytes compared with the control group. Volunteers from the TRF group produced significantly (P < 0.05) lower amounts of IL-6 compared with the placebo group. Anti-TT IgG production was also significantly (P < 0.05) augmented in the TRF-supplemented group compared with the placebo group.

CONCLUSIONS: We conclude that TRF has immunostimulatory effects and potential clinical benefits to enhance immune response to vaccines.

Tocotrienol-treated MCF-7 human breast cancer cells show down-regulation of API5 and up-regulation of MIG6 genes

Ramdas P, Rajihuzzaman M, Veerasenan SD, Selvaduray KR, Nesaretnam K, Radhakrishnan AK.

Cancer Genomics Proteomics. 2011 Jan-Feb;8(1):19-31.

BACKGROUND: Tocotrienols belong to the vitamin E family and have multiple anticancer effects, such as antiproliferative, antioxidant, pro-apoptosis and antimetastatic. This study aimed to identify the genes that are regulated in human breast cancer cells following exposure to various isomers of vitamin E as these may be potential targets for the treatment of breast cancer.

MATERIALS AND METHODS: Gene expression profiling was performed with MCF-7 cells at inhibitory conditions of IC(50) using Illumina’s Sentrix Array Human-6 BeadChips. The expression levels of selected differentially expressed genes were verified by quantitative real-time-PCR (qRT-PCR).

RESULTS: The treatment with tocotrienol-rich palm oil fraction (TRF), α-tocopherol and isomers of tocotrienols (α, γ, and δ) altered the expression of several genes that code for proteins involved in the regulation of immune response, tumour growth and metastatic suppression, apoptotic signalling, transcription, protein biosynthesis regulation and many others.

CONCLUSION: Treatment of human MCF-7 cells with tocotrienol isomers causes the down-regulation of the API5 gene and up-regulation of the MIG6 gene and the differential expression of other genes reported to play a key role in breast cancer biology.