Simultaneous induction of non-neoplastic and neoplastic lesions with highly proliferative hepatocytes following dietary exposure of rats to tocotrienol for 2 years

Tasaki M, Umemura T, Kijima A, Inoue T, Okamura T, Kuroiwa Y, Ishii Y, Nishikawa A.

Arch Toxicol. 2009 Nov;83(11):1021-30. Epub 2009 Aug 11.

It was recently shown that 1-year chronic exposure of rats to tocotrienol (TT) induced highly proliferative liver lesions, nodular hepatocellular hyperplasia (NHH), and independently increased the number of glutathione S-transferase placental form (GST-P)-positive hepatocytes. Focusing attention on the pathological intrinsic property of NHH, a 104-week carcinogenicity study was performed in male and female Wistar Hannover rats given TT at concentrations of 0, 0.4 or 2% in the diet. The high-dose level was adjusted to 1% in both sexes from week 51 because the survival rate of the high-dose males dropped to 42% by week 50. At necropsy, multiple cyst-like nodules were observed, as in the chronic study, but were further enlarged in size, which consequently formed a protuberant surface with a partly pedunculated shape in the liver at the high dose in both sexes. Unlike the chronic study, NHH was not always accompanied by spongiosis, and instead angiectasis was prominent in some nodules. However, several findings in the affected hepatocytes such as minimal atypia, no GST-P immunoreactivity and heterogeneous proliferation, implied that NHH did not harbor neoplastic characteristics from increased exposure despite sustained high cell proliferation. On the other hand, in the high-dose females, the incidence of hepatocellular adenomas was significantly higher than in the control. There was no TT treatment-related tumor induction in any other organs besides the liver. Thus, the overall data clearly suggested that NHH is successively enlarged by further long-term exposure to TT, but does not become neoplastic. In contrast, TT induces low levels of hepatocellular adenomas in female rats.

Effects of tocotrienol-rich fraction on exercise endurance capacity and oxidative stress in forced swimming rats

Lee SP, Mar GY, Ng LT.

Eur J Appl Physiol. 2009 Nov;107(5):587-95. Epub 2009 Aug 25.

The present study aimed to examine the effects of tocotrienol-rich fraction (TRF) on exercise endurance and oxidative stress in forced swimming rats. Rats fed on isocaloric diet were orally given 25 (TRF-25) and 50 (TRF-50) mg/kg of TRF, or 25 mg/kg D-alpha-tocopherol (T-25) whilst the control group received only the vehicle for 28 days, followed by being forced to undergo swimming endurance tests, with measurements taken of various biochemical parameters, including blood glucose, lactate and urea nitrogen, glycogen, total antioxidant capacity, antioxidant enzymes, thiobarbituric acid-reactive substances (TBARS), and protein carbonyl. Results showed that the TRF-treated animals (268.0 +/- 24.1 min for TRF-25 and 332.5 +/- 24.3 min for TRF-50) swam significantly longer than the control (135.5 +/- 32.9 min) and T-25-treated (154.1 +/- 36.4 min) animals, whereas there was no difference in the performance between the T-25 and control groups. The TRF-treated rats also showed significantly higher concentrations of liver glycogen, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), as well as of muscle glycogen and SOD than the control and the T-25-treated animals, but lower levels in blood lactate, plasma and liver TBARS, and liver and muscle protein carbonyl. Taken together, these results suggest that TRF is able to improve the physiological condition and reduce the exercise-induced oxidative stress in forced swimming rats.

Assessing the neuroprotective effect of antioxidative food factors by application of lipid-derived dopamine modification adducts

Liu X, Yamada N, Osawa T.

Methods Mol Biol. 2009;580:143-52.

Advances in understanding the neurodegenerative pathologies are creating new opportunities for the development of neuroprotective therapies, such as antioxidant food factors, lifestyle modification, and drugs. However, the biomarker by which to determine the effect of the agent on neurodegeneration is limited. We here address hexanoyl dopamine (HED), one of novel dopamine adducts derived from brain polyunsaturated acid, referring to its in vitro formation, potent toxicity to SH-SY5Y cells, and application to assess the neuroprotective effect of antioxidative food factors. Dopamine is a neurotransmitter and its deficiency is a characterized feature in Parkinson’s disease (PD), thereby HED represents a new addition to understanding of dopamine biology and pathophysiology of PD and a novel biomarker for the assessment of neuroprotective therapies. We have established an analytical system using for the detection of HED and its toxicity to the neuroblstoma cell line, SH-SY5Y cells. Here, we discuss the characteristics of the system and its applications to investigate the neuroprotective effect of several antioxidants that originate from food.

Ferric nitrilotriacetate (Fe-NTA) is a well-established nephrotoxic agent. This study was designed to investigate the modulatory effect of the subacute administration of tocotrienol-rich fraction (T3), a product from palm oil, and alpha-tocopherol (T) on Fe-NTA-induced renal injury and oxidative stress. Fe-NTA administration markedly increased blood urea nitrogen (BUN) and serum creatinine level, which was coupled with a marked lipid peroxidation, reduced activity of glutathione levels, and morphological alterations in rat kidney. Pretreatment with T3 (50 mg/kg/day) and T (50 mg/kg/day) for 7 days before Fe-NTA administration significantly reduced the serum creatinine and BUN levels, reduced lipid peroxidation in a significant manner, and restored levels of reduced glutathione and superoxide dismutase. T3 pretreatment also attenuated the serum tumor necrosis factor-alpha levels, as compared to pretreatment with T, and restored normal renal morphology. These findings suggest a strong correlation between iron-induced oxidative stress and renal dysfunction and point toward the protective effects of T3 in Fe-NTA-induced renal injury.

Red palm oil: Nutritional, physiological and therapeutic roles in improving human wellbeing and quality of life

Oguntibeju OO, Esterhuyse AJ, Truter EJ.

Br J Biomed Sci. 2009;66(4):216-22.

The link between dietary fats and cardiovascular disease has created a growing interest in dietary red palm oil research. Also, the link between nutrition and health, oxidative stress and the severity or progression of disease has stimulated further interest in the potential role of red palm oil (a natural antioxidant product) to improve oxidative status by reducing oxidative stress in patients with cardiovascular disease, cancer and other chronic diseases. In spite of its level of saturated fatty acid content (50%), red palm oil has not been found to promote atherosclerosis and/or arterial thrombosis. This is probably due to the ratio of its saturated fatty acid to unsaturated fatty acid content and its high concentration of antioxidants such as beta-carotene, tocotrienols, tocopherols and vitamin E. It has also been reported that the consumption of red palm oil reduces the level of endogenous cholesterol, and this seems to be due to the presence of the tocotrienols and the peculiar isomeric position of its fatty acids. The benefits of red palm oil to health include a reduction in the risk of arterial thrombosis and/or atherosclerosis, inhibition of endogenous cholesterol biosynthesis, platelet aggregation, a reduction in oxidative stress and a reduction in blood pressure. It has also been shown that dietary red palm oil, taken in moderation in animals and humans, promotes the efficient utilisation of nutrients, activates hepatic drug metabolising enzymes, facilitates the haemoglobinisation of red blood cells and improves immune function. This review provides a comprehensive overview of the nutritional, physiological and biochemical roles of red palm oil in improving wellbeing and quality of life.

Induction of caspase-independent programmed cell death by vitamin E natural homologs and synthetic derivatives

Constantinou C, Hyatt JA, Vraka PS, Papas A, Papas KA, Neophytou C, Hadjivassiliou V, Constantinou AI.

Nutr Cancer. 2009;61(6):864-74.

Current observations in the literature suggest that vitamin E may be a suitable candidate for cancer chemotherapy. To investigate this further, we examined the ability of the vitamin E natural homologs [alpha-, beta-, gamma-, delta-tocopherols (alpha-TOC, beta-TOC, gamma-TOC, delta-TOC) and alpha-, beta-, gamma-, delta-tocotrienols (alpha-TT, beta-TT, gamma-TT, delta-TT)] and their corresponding succinate synthetic derivatives [alpha-, beta-, gamma-, delta-tocopheryl succinates and alpha-, beta-, gamma-, delta-tocotrienyl succinates (alpha-TS, beta-TS, gamma-TS, delta-TS)] to induce cell death in AR- (DU145 and PC3) and AR+ (LNCaP) prostate cancer cell lines. The most effective of all the natural homologs of vitamin E was determined to be delta-TT, whereas delta-TS was the most potent of all the natural and synthetic compounds of vitamin E examined. Both gamma-TT and delta-TT induced caspase activity selectively in AR+ LNCaP cells, suggesting a possible role for AR for the activation of caspase-dependent programmed cell death (CD-PCD). More important, however, gamma-TT, delta-TT, gamma-TS, and delta-TS activated dominant caspase-independent programmed cell death (CI-PCD) in all prostate cancer cell lines examined. Thus, vitamin E homologs and synthetic derivatives may find applications in the treatment of prostate tumors that are resistant to caspase-activating therapeutic agents.

Endoplasmic reticulum stress mediates gamma-tocotrienol-induced apoptosis in mammary tumor cells

Wali VB, Bachawal SV, Sylvester PW.

Apoptosis. 2009 Nov;14(11):1366-77.

Gamma-Tocotrienol, a member of the vitamin E family of compounds, induces apoptosis in a variety of cancer cell types. However, previous studies have clearly demonstrated that gamma-tocotrienol-induced apoptosis in neoplastic mouse +SA mammary epithelial cells is not mediated through mitochondrial stress or death receptor apoptotic signaling. Therefore, studies were conducted to determine the role of endoplasmic reticulum (ER) stress in mediating gamma-tocotrienol-induced apoptosis in +SA mammary tumor cells. Treatment with 15-40 microM gamma-tocotrienol induced +SA cell death in a dose-responsive manner, and these effects were associated with a corresponding increase in poly (ADP-ribose) polymerase (PARP)-cleavage and activation of protein kinase-like endoplasmic reticulum kinase/eukaryotic translational initiation factor/activating transcription factor 4 (PERK/eIF2alpha/ATF-4) pathway, a marker of ER stress response. These treatments also caused a large increase in C/EBP homologous protein (CHOP) levels, a key component of ER stress mediated apoptosis that increases expression of tribbles 3 (TRB3). Knockdown of CHOP by specific siRNAs attenuated gamma-tocotrienol-induced PARP-cleavage, CHOP and TRB3 expression. gamma-Tocotrienol treatment also reduced full-length caspase-12 levels, an indication of caspase-12 cleavage and activation. Intracellular levels of 3-hydroxy-3-methylglutaryl-coenzyme A (HMGCoA) reductase, an ER-transmembrane enzyme catalyzing the synthesis of mevalonate, decreased following gamma-tocotrienol treatment, but combined treatment with mevalonate did not reverse gamma-tocotrienol-induced apoptosis, suggesting that a decrease in HMGCoA reductase activity is not required for gamma-tocotrienol induced apoptosis. These results demonstrate that ER stress apoptotic signaling is associated with gamma-tocotrienol-induced apoptosis in +SA mammary tumor cells.

Suppression of neuro-inflammatory signaling cascade by tocotrienol can prevent chronic alcohol-induced cognitive dysfunction in rats

Tiwari V, Kuhad A, Chopra K.

Behav Brain Res. 2009 Nov 5;203(2):296-303.

Chronic alcohol intake is known to induce the selective neuronal damage associated with increase oxidative-nitrosative stress and activation of inflammatory cascade finally resulting in neuronal apoptosis and thus dementia. In the present study, we investigated the comparative effect of both the isoforms of vitamin E, alpha-tocopherol and tocotrienol against chronic alcohol-induced cognitive dysfunction in rats. Male Wistar rats were given ethanol (10g/kg; oral gavage) for 10 weeks, and treated with alpha-tocopherol and tocotrienol for the same duration. The learning and memory behavior was assessed using Morris water maze and elevated plus maze test. The rats were sacrificed at the end of 10th week and cytoplasmic fractions of cerebral cortex and hippocampus were prepared for the quantification of acetylcholinesterase activity, oxidative-nitrosative stress parameters, tumor necrosis factor-alpha (TNF-alpha), and interleukin-1beta (IL-1beta). From the 6th week onwards, ethanol-treated rats showed significant increase in transfer latency in both the behavioral paradigms which was coupled with enhanced acetylcholinesterase activity, increased oxidative-nitrosative stress, TNF-alpha and IL-1beta levels in different brain regions of ethanol-treated rats. Co-administration of alpha-tocopherol as well as tocotrienol significantly and dose-dependently prevented these behavioral, biochemical and molecular changes in the brains of ethanol-treated rats. However, the effects were more pronounced with tocotrienol. The current study thus demonstrates the possible involvement of oxidative-nitrosative stress mediated activation of inflammatory cascade in chronic alcohol-induced cognitive dysfunction and also suggests the effectiveness of vitamin E isoforms, of which tocotrienol being more potent, in preventing the cognitive deficits associated with chronic alcohol consumption.

Suppression in mevalonate synthesis mediates antitumor effects of combined statin and gamma-tocotrienol treatment

Wali VB, Bachawal SV, Sylvester PW.

Lipids. 2009 Oct;44(10):925-34. Epub 2009 Sep 24.

Statins directly inhibit 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) activity, while gamma-tocotrienol, an isoform of vitamin E, enhances the degradation and reduces cellular levels of HMGR in various tumor cell lines. Since treatment with statins or gamma-tocotrienol alone induced a dose-responsive inhibition, whereas combined treatment with subeffective doses of these agents resulted in a synergistic inhibition in +SA mammary tumor cell growth, studies were conducted to investigate the role of the HMGR pathway in mediating the antiproliferative effects of combined low dose statin and gamma-tocotrienol. Treatment with 8 microM simvastatin inhibited cell growth and isoprenylation of Rap1A and Rab6, and supplementation with 2 microM mevalonate reversed these effects. However, the growth inhibitory effects of 4 microM gamma-tocotrienol were not dependent upon suppression in mevalonate synthesis. Treatment with subeffective doses of simvastatin (0.25 microM), lovastatin (0.25 microM), mevastatin (0.25 microM), pravastatin (10 microM), or gamma-tocotrienol (2 muM) alone had no effect on protein prenylation or mitogenic signaling, whereas combined treatment with these agents resulted in a significant inhibition in +SA cell growth, and a corresponding decrease in total HMGR, Rap1A and Rab6 prenylation, and MAPK signaling, and mevalonate supplementation reversed these effects. These findings demonstrate that the synergistic antiproliferative effects of combined low dose statin and gamma-tocotrienol treatment are directly related to an inhibition in HMGR activity and subsequent suppression in mevalonate synthesis.

Tocotrienol ameliorates behavioral and biochemical alterations in the rat model of alcoholic neuropathy

Tiwari V, Kuhad A, Chopra K. Source

Pain. 2009 Sep;145(1-2):129-35. Epub 2009 Jun 21

Chronic alcohol consumption produces a painful peripheral neuropathy for which there is no reliable successful therapy, which is mainly due to lack of understanding of its pathobiology. Alcoholic neuropathy is characterized by spontaneous burning pain, hyperalgesia (an exaggerated pain in response to painful stimuli) and allodynia (a pain evoked by normally innocuous stimuli). Chronic alcohol intake is known to decrease the nociceptive threshold with increased oxidative-nitrosative stress and release of proinflammatory cytokines coupled with activation of protein kinase C. The aim of the present study is to investigate the effect of both isoforms of vitamin E, alpha-tocopherol (100mg/kg; oral gavage) and tocotrienol (50, 100 and 200mg/kg; oral gavage) against alcohol-induced neuropathic pain in rats. Male Wistar rats, were administered 35% v/v ethanol (10 g/kg; oral gavage) for 10 weeks, and were treated with alpha-tocopherol and tocotrienol for the same duration. Ethanol-treated animals showed a significant decrease in nociceptive threshold as evident from decreased tail flick latency (thermal hyperalgesia) and decreased paw-withdrawal threshold in Randall-Sellito test (mechanical hyperalgesia) and von-Frey hair test (mechanical allodynia) along with the reduction in nerve glutathione and superoxide dismutase levels. TNF-alpha and IL-1beta levels were also significantly increased in both serum and sciatic nerve of ethanol-treated rats. Treatment with alpha-tocopherol and tocotrienol for 10 weeks significantly improved all the above-stated functional and biochemical deficits in a dose-dependent manner with more potent effects observed with tocotrienol. The study demonstrates the effectiveness of tocotrienol in attenuation of alcoholic neuropathy.