The effect of tocotrienol on the activities of glutathione S-transferases (GSTs), glutathione reductase (GR) and glutathione peroxidase (GPx) in rats given 2-acetylaminofluorene (AAF) was investigated over a 20 week period. Liver and kidney GST and liver GR activities were significantly increased after AAF administration. Kidney GPx activities were significantly affected; activity assayed with cumene hydroperoxide (cu-OOH) was increased but activity assayed with H2O2 was reduced. Supplementation of the diet with tocotrienol in the AAF-treated rats reduced the increase in enzyme activities. Tocotrienol on its own had no effect on the enzyme activities.

alpha-Tocopherol, the most active form of vitamin E, causes a dose-dependent inhibition of serum-induced proliferation of smooth muscle cells (A7r5) in culture. Some tocopherol-related compounds exhibiting various degrees of antioxidant potency have also been tested on cellular proliferation. No direct correlation between the antioxidant activity of these compounds and their effect on smooth muscle cell growth could be observed. While most of the derivatives employed were not effective in inhibiting protein kinase C, in the case of alpha-tocopherol the antiproliferative effect was found to be parallel to the inhibition of protein kinase C activity, as measured in streptolysin-O permeabilized cells.

Certain aspects of tocopherol and tocotrienol absorption, plasma transport, and tissue distribution were examined in humans and hamsters. Plasma transport differed in that tocopherols were found primarily in low density lipoprotein and high density lipoprotein in association with plasma surface components, whereas tocotrienols disappeared from plasma with chylomicron clearance. In keeping with transport by triglyceride-rich lipoproteins, tocotrienols were deposited in conjunction with triglycerides in the adipose tissue of hamsters. In hamsters, tocopherols were the only tocol readily detected in all tissues, except adipose during tocotrienol supplementation. In fasting humans, the plasma tocotrienol concentration was not significantly increased after tocotrienol supplementation, whereas the platelet concentration of delta-tocotrienol doubled. Furthermore, tocotrienol intake did not appear to modulate the plasma cholesterol concentration in normolipemic hamsters. Thus, the transport, tissue concentration, and relative biologic function of tocopherol and tocotrienol appear somewhat disparate and possibly unrelated.

Comparative antioxidant activity of tocotrienols and other natural lipid-soluble antioxidants in a homogeneous system, and in rat and human lipoprotein

Suarna C, Hood RL, Dean RT, Stocker R.

Biochim Biophys Acta. 1993 Feb 24;1166(2-3):163-70.

The antioxidant activity of tocotrienols toward peroxyl radicals was compared with that of other natural lipid-soluble antioxidants in three different systems by measuring the temporal disappearance of antioxidants and the formation of lipid hydroperoxides. In homogeneous solution, the initial rates of consumption of the various antioxidants, assessed by competition experiments between pairs of antioxidants for radicals, decreased in the order: ubiquinol-10 approximately ubiquinol-9 > alpha-tocopherol approximately alpha-tocotrienol > beta-carotene approximately lycopene > gamma-tocopherol approximately gamma-tocotrienol. Following in vitro incubation of human plasma with alpha-tocotrienol, this form of vitamin E was present in all classes of lipoproteins isolated from the supplemented plasma. Dietary supplementation of rats and humans with a tocotrienol-rich preparation resulted in a dose-dependent appearance of alpha- and gamma-tocotrienols in plasma and all circulating lipoproteins, respectively. Exposure of such enriched rat plasma to aqueous peroxyl radicals resulted in simultaneous consumption of the alpha- and then gamma-isomers of vitamin E. The sequence of radical-induced consumption of antioxidants in freshly isolated, in vitro and in vivo tocotrienol-enriched low density lipoprotein (LDL) was again ubiquinol-10 > alpha-tocotrienol approximately alpha-tocopherol > carotenoids > gamma-tocopherol approximately gamma-tocotrienol. Under conditions where radicals were generated at constant rates, the rate of lipid hydroperoxide formation in LDL was not constant. It proceeded in at least three stages separated by the phase of ubiquinol-10 consumption and, subsequently, that of alpha-tocopherol/alpha-tocotrienol. Our results show that dietary tocotrienols become incorporated into circulating human lipoproteins where they react with peroxyl radicals as efficiently as the corresponding tocopherol isomers.

Tocotrienol and fatty acid composition of barley oil and their effects on lipid metabolism

Wang L, Newman RK, Newman CW, Jackson LL, Hofer PJ.

Plant Foods Hum Nutr. 1993 Jan;43(1):9-17.

Barley oil was extracted with hexane from the grain of a high oil waxy hull-less barley. Twelve male broiler chicks were fed corn-based diets with either 10% barley oil, 10% corn oil or 10% margarine ad libitum for ten days. Total plasma cholesterol concentration of the chicks fed barley oil was 34% lower (p < 0.05) than that of the chicks fed margarine. Plasma low density lipoprotein cholesterol concentration of chicks fed barley oil was 53% and 59% lower (p < 0.05) than those of chicks fed corn oil and margarine, respectively. Plasma high density lipoprotein cholesterol and triglyceride concentration of the barley oil group were similar to those of the margarine but higher (p < 0.05) than those of the corn oil group. Chicks fed the barley oil gained more (p < 0.05) body weight than those fed the corn oil and margarine. Barley oil had an effect in suppression of TC and LDLC in chicks compared to margarine. Barley oil suppressed LDLC but not HDLC in chicks compared to corn oil. A greater weight gain of the chicks fed barley oil suggested that these chicks had normally functioning digestion and absorption. alpha-Tocotrienol and gamma-tocotrienol content of the barley oil were 24 and 17 times greater, respectively, than those observed in the corn oil, while the same fractions were not detectable in the margarine. Polyunsaturated fatty acid content of the barley oil was more than threefold that of margarine. These data suggest that alpha-tocotrienol and polyunsaturated fatty acids are hypocholesterolemic components in barley oil.

Vitamin E inhibits protein oxidation in skeletal muscle of resting and exercised rats

Reznick AZ, Witt E, Matsumoto M, Packer L.

Biochem Biophys Res Commun. 1992 Dec 15;189(2):801-6.

It is well known that exercise induces lipid peroxidation in skeletal muscle and that vitamin E prevents exercise-induced lipid damage. In this study we show for the first time, an increase in protein oxidation in skeletal muscle after a single bout of exercise, related to an exercise-induced decrease in lipophilic antioxidants, and substantial protection against both resting and exercise-induced protein oxidation by supplementation with various isomers (alpha-tocopherol, alpha-tocotrienol) of vitamin E.

Hypocholesterolemic activity of synthetic and natural tocotrienols

Pearce BC, Parker RA, Deason ME, Qureshi AA, Wright JJ.

J Med Chem. 1992 Oct 2;35(20):3595-606.

Tocotrienols are farnesylated benzopyran natural products that exhibit hypocholesterolemic activity in vitro and in vivo. The mechanism of their hypolipidemic action involves posttranscriptional suppression of HMG-CoA reductase by a process distinct from other known inhibitors of cholesterol biosynthesis. An efficient synthetic route to tocotrienols and their isolation from palm oil distillate using an improved procedure is presented. gamma-Tocotrienol exhibits a 30-fold greater activity toward cholesterol biosynthesis inhibition compared to alpha-tocotrienol in HepG2 cells in vitro. The synthetic (racemic) and natural (chiral) tocotrienols exhibit nearly identical cholesterol biosynthesis inhibition and HMG-CoA reductase suppression properties as demonstrated in vitro and in vivo.

Both alpha-tocopherol and a 1:1.7 mixture of alpha-tocopherol and tocotrienols at a 0.2% dietary level significantly depressed the age-related increase in the systolic blood pressure of spontaneously hypertensive rats (SHRs) after 3 weeks of feeding. The aortic production of prostacyclin was increased 1.5 times both by alpha-tocopherol and a tocotrienol mixture, suggesting a possible relevance to their hypotensive effect. These vitamins did not influence the delta 6- and delta 5-desaturase activities of liver microsomes, but fatty acid profiles of the liver phospholipids predicted a reduction of linoleic acid desaturation. These effects were in general more clear with tocotrienols than with alpha-tocopherol. Platelet aggregation by 5 microM ADP remained uninfluenced. Thus, tocotrienols may have effects on various lipid parameters somewhat different from those of alpha-tocopherol.

Read Full Article Here

Antioxidant functions of vitamins. Vitamins E and C, beta-carotene, and other carotenoids

Sies H, Stahl W, Sundquist AR.

Ann N Y Acad Sci. 1992 Sep 30;669:7-20

Tocopherols and tocotrienols (vitamin E) and ascorbic acid (vitamin C) as well as the carotenoids react with free radicals, notably peroxyl radicals, and with singlet molecular oxygen (1O2), this being the basis of their function as antioxidants. RRR-alpha-tocopherol is the major peroxyl radical scavenger in biological lipid phases such as membranes or low-density lipoproteins (LDL). L-Ascorbate is present in aqueous compartments (e.g. cytosol, plasma, and other body fluids) and can reduce the tocopheroxyl radical; it also has a number of metabolically important cofactor functions in enzyme reactions, notably hydroxylations. Upon oxidation, these micronutrients need to be regenerated in the biological setting, hence the need for further coupling to nonradical reducing systems such as glutathione/glutathione disulfide, dihydrolipoate/lipoate, or NADPH/NADP+ and NADH/NAD+. Carotenoids, notably beta-carotene and lycopene as well as oxycarotenoids (e.g. zeaxanthin and lutein), exert antioxidant functions in lipid phases by free-radical or 1O2 quenching. There are pronounced differences in tissue carotenoid patterns, extending also to the distribution between the all-trans and various cis isomers of the respective carotenoids. Antioxidant functions are associated with lowering DNA damage, malignant transformation, and other parameters of cell damage in vitro as well as epidemiologically with lowered incidence of certain types of cancer and degenerative diseases, such as ischemic heart disease and cataract. They are of importance in the process of aging. Reactive oxygen species occur in tissues and cells and can damage DNA, proteins, carbohydrates, and lipids. These potentially deleterious reactions are controlled in part by antioxidants that eliminate prooxidants and scavenge free radicals. Their ability as antioxidants to quench radicals and 1O2 may explain some anticancer properties of the carotenoids independent of their provitamin A activity, but other functions may play a role as well. Tocopherols are the most abundant and efficient scavengers of peroxyl radicals in biological membranes. The water-soluble antioxidant vitamin C can reduce tocopheroxyl radicals directly or indirectly and thus support the antioxidant activity of vitamin E; such functions can be performed also by other appropriate reducing compounds such as glutathione (GSH) or dihydrolipoate. The biological efficacy of the antioxidants is also determined by their biokinetics.

Interactions among antioxidants in health and disease: Vitamin E and its redox cycle

Packer L.

Proc Soc Exp Biol Med. 1992 Jun;200(2):271-6.

Probably most diseases at some point during their course involve free radical reactions in tissue injury. In some cases, free radical reactions may be involved in multiple sites and at different stages of a chronic disease. So, both acute and degenerative diseases are thought to involve free radical reactions in tissue injury. An overview will be given of the evidence for the occurrence of free radicals and the importance of antioxidant interventions, with particular reference to the lipophilic antioxidant vitamin E (tocopherols and tocotrienols).