Inhibition of lipid peroxidation during the reproductive period extends the lifespan of Caenorhabditis elegans

Sakamoto T, Maebayashi K, Tsunoda Y, Imai H

J Clin Biochem Nutr. 2020 Mar;66(2):116-123. doi: 10.3164/jcbn.19-51. Epub 2020 Jan 31.

Abstract

Glutathione peroxidase 4 (GPx4) is a unique antioxidant enzyme that directly reduces the phospholipid hydroperoxides (PLOOH) generated in biomembranes using glutathione as the reductant. We have previously reported that the Caenorhabditis elegans gpx-quad mutant, which lacks all homologous genes of GPx4 has a reduced lifespan compared with the wild-type. However, the mechanisms underlying the lifespan reduction remain unclear. By monitoring the change in PLOOH production with age, we found that PLOOH was elevated in the gpx-quad mutants compared with the wild-type during the reproductive period. Administration of vitamin E not only reduced the PLOOH content but also prolonged the lifespan of the gpx-quad mutants. In contrast, vitamin C did not extend the lifespan of the gpx-quad mutants. Interestingly, we found that the inhibition of lipid peroxidation by vitamin E during 5 to 10 days after hatching is important to extend the lifespan of C. elegans. These results suggest that production of PLOOH during the reproductive period strongly influences the lifespan of C. elegans.

Read More

pH-sensitive small molecule nanodrug self-assembled from amphiphilic vitamin B6-E analogue conjugate for targeted synergistic cancer therapy

Yan G, Chen R, Xiong N, Song J, Wang X, Tang R

Colloids Surf B Biointerfaces. 2020 Mar 28;191:111000. doi: 10.1016/j.colsurfb.2020.111000. [Epub ahead of print]

Abstract

To promote the targeted cancer therapy, the pH-sensitive small molecule nanodrug self-assembled from amphiphilic vitamin B6-E analogue conjugate was successfully constructed. Herein, water-soluble vitamin B6 with pKa (5.6) was chemically conjugated to lipid-soluble vitamin E succinate (α-TOS), which showed selective cancer cell killing ability and this amphiphilic small molecule vitamin conjugate could self-assemble to be free nanoparticles (NPs) and doxorubicin-loaded NPs (α-TOS-B6-NPs-DOX). The small molecule nanodrugs could perform the following characteristic: (i) stability in the sodium dodecyl sulfonate (SDS) solution and long-term storage stability in PBS via surface negative charge; (ii) tumor accumulation by enhanced penetration and retention (EPR) effect; (iii) improved cellular internalization by means of vitamin B6 transporting membrane carrier (VTC); and (iv) facilitating endosomal escape and rapid drug release for synergistic toxicity to tumor cells via charge reversal and ester hydrolysis at intracellular pH and/or esterase. Moreover, α-TOS-B6-NPs-DOX exhibited long blood circulation stability and significant tumor accumulation and inhibition with the decreased side effects in vivo. Thus, the pH-sensitive small molecule nanodrug self-assembled from amphiphilic vitamin B6-E analogue conjugate could be the potential drug carriers in targeted synergistic cancer therapy.

Read More

The ABCs of Beauty: Skincare Experts Explain Vitamin E

“The basic function of vitamin E is that of being antioxidant and anti-inflammatory. For example, when one sustains a sunburn on the skin, the presence of gamma-tocopherol essentially blocks the production of inflammatory chemicals like prostaglandins which exacerbate and worsen the sunburn reaction. In a sense, it offers the skin tissue protection from oxidative stress,” says Dr Teo Wan Lin, founder and medical director of TWL Specialist Skin & Laser Centre.

Read More

Oxidative stress, hematological and biochemical alterations induced by sub-acute exposure to fipronil (COACH®) in albino mice and ameliorative effect of selenium plus vitamin E

Abouelghar GE, El-Bermawy ZA, Salman HMS

Environ Sci Pollut Res Int. 2020 Mar;27(8):7886-7900. doi: 10.1007/s11356-019-06579-9. Epub 2019 Dec 30.

Abstract

Fipronil (FIP) is a highly effective, broad-use insecticide that belongs to the phenylpyrazole chemical group. It is extensively used in the agriculture and veterinary medicine for controlling a wide variety of pests. Though FIP showed lower toxicity in vertebrates than in insects, it was recognized to have a variety of toxic effects in mammals. The present study was undertaken to evaluate FIP-induced alterations in the blood biochemical markers and oxidative stress parameters in male albino mice via oral sub-acute toxicity exposure. The possible ameliorative effect of the pretreatment with selenium plus α-tocopherol (vitamin E) against the harmful effects of FIP was also investigated. Mice in FIP-test groups were exposed to different sublethal doses, i.e., 1.43, 2.87, and 4.78 mg active ingredient (AI)/kg body weight (b.w.), equal to 1/100, 1/50, and 1/30 LD50 of FIP, respectively, for 28 days. Mice in the amelioration groups were orally administered with selenium + vitamin E (0.3 mg + 22.5 mg/kg b.w., respectively) 14 days prior to exposure to the higher dose (4.78 mg/kg) of FIP for another 14 days. Fipronil exposure at medium and high doses showed lowered values of red blood cell count (RBC), hematocrit (HCT), hemoglobin (HGB), white blood cell (WBC), and platelet (PLT) counts after 28-day exposure, compared to the control. All three doses caused significant increases in levels of liver-function biomarkers, i.e., aspartate amino transaminase (AST), alanine amino transaminase (ALT), alkaline phosphatase (ALP), cholesterol, and bilirubin levels compared to the control. Levels of biomarkers related to kidney functions, i.e., urea, uric acid, and creatinine, increased significantly than these of the control. Likewise, the oxidative stress indices, i.e., hydrogen peroxide (H2O2) and malondialdehyde (MDA), significantly increased at the higher and medium doses, while antioxidant enzymes, catalase (CAT) and superoxide dismutase (SOD), decreased significantly. On the other hand, prior administration of selenium + vitamin E in the FIP-exposed mice led to restore values of most hematological parameters nearly to these of the control. Also, the levels of AST, total protein, and creatinine seemed to be restored to the control values. Interestingly, pretreatment with selenium + vitamin E restored the levels of antioxidant enzymes, CAT and SOD, to the control values, whereas, oxidative stress indices, H2O2 and MDA, remained significantly high. It is our thought that the sublethal dose less than 1.43 mg/kg b.w. of commercial formulation of FIP (COACH® 200 SC) could be considered as no-observed-adverse-effect-level(NOAEL) under our present experimental conditions at short-term toxicity study. On the other hand, the higher sublethal doses, 4.78 and 2.87 mg/kg b.w., induced significant adverse effects in biomarkers and may be deleterious to human health following long-term exposure.

Read More

Extraction of phytosterols and tocopherols from rapeseed oil waste by supercritical CO2 plus co-solvent: A comparison with conventional solvent extraction

Jafarian Asl P, Niazmand R, Yahyavi F

Heliyon. 2020 Mar 25;6(3):e03592. doi: 10.1016/j.heliyon.2020.e03592. eCollection 2020 Mar.

Abstract

In the present study, modified extraction methods using supercritical CO2 were investigated in order to obtain high-added value compounds from rapeseed oil deodorizer distillate and comparisons were done with modified Soxhlet extraction (solvent extraction + silica). For supercritical fluid extraction (SFE), the optimal extraction parameters were temperature of 40 °C, pressure of 350 bar (for phytosterols), 400 bar (for tocopherol), 5 wt% ethanol as co-solvent, and saponification pretreatment. The optimized SFE procedure led to the recovery of three main phytosterols (50 wt % β-sitosterol, 23.91 wt % Brassicasterol, and 36.25 wt % Campesterol) and only α-tocopherol. Moreover, there was no synergistic effect with saponification pretreatment + co-solvent and the efficiency and concentration of target compounds were less than supercritical CO2 + co-solvent. Also, comparative Data showed that the efficiency of phytosterols and tocopherols was approximately three times higher (p < 0.05) in SFE relative to modified Soxhlet extraction. Furthermore, the use of ethanol (5 wt %) as co-solvent, improved phytosterols and tocopherol efficiency and purity. The SFE technique offers various advantages over the modified Soxhlet extraction technique, including increasing the solubility of tocopherols and sterols by using CO2+ co-solvent, minimized usage of toxic organic solvents and increased purity of extracted products.

Read More

Vitamin E, Pentoxifylline and TheraBite System Ease Lockjaw, Small Study Suggests

Using vitamin Epentoxifylline, and the TheraBite Jaw Motion Rehabilitation System may help reduce trismus — commonly called lockjaw — in people with scleroderma, a study in two patients suggests.The research, “Dental management of scleroderma patients using pentoxifylline plus vitamin E with and without TheraBite® to reduce trismus: Two case reports and brief review of literature,” was published in the journal Clinical Case Reports.

Read More

Enhanced Antioxidative Defense by Vitamins C and E Consumption Prevents 7-Day High-Salt Diet-Induced Microvascular Endothelial Function Impairment in Young Healthy Individuals

Barić L, Drenjančević I, Mihalj M, Matić A, Stupin M, Kolar L, Mihaljević Z, Mrakovčić-Šutić I, Šerić V, Stupin A

J Clin Med. 2020 Mar 20;9(3). pii: E843. doi: 10.3390/jcm9030843.

Abstract

This study aimed to examine whether the oral supplementation of vitamins C and E during a seven-day high salt diet (HS; ~14 g salt/day) prevents microvascular endothelial function impairment and changes oxidative status caused by HS diet in 51 (26 women and 25 men) young healthy individuals. Laser Doppler flowmetry measurements demonstrated that skin post-occlusive reactive hyperemia (PORH), and acetylcholine-induced dilation (AChID) were significantly impaired in the HS group, but not in HS+C+E group, while sodium nitroprusside-induced dilation remained unaffected by treatments. Serum oxidative stress markers: Thiobarbituric acid reactive substances (TBARS), 8-iso prostaglandin-F2α, and leukocytes’ intracellular hydrogen peroxide (H2O2) production were significantly increased, while ferric-reducing ability of plasma (FRAP) and catalase concentrations were decreased in the HS group. All these parameters remained unaffected by vitamins supplementation. Matrix metalloproteinase 9, antioxidant enzymes Cu/Zn SOD and glutathione peroxidase 1, and leukocytes’ intracellular superoxide production remained unchanged after the protocols in both HS and HS+C+E groups. Importantly, multiple regression analysis revealed that FRAP was the most powerful predictor of AChID, while PORH was strongly predicted by both FRAP and renin-angiotensin system activity. Hereby, we demonstrated that oxidative dis-balance has the pivotal role in HS diet-induced impairment of endothelial and microvascular function in healthy individuals which could be prevented by antioxidative vitamins consumption.

Read More

Oxidative stress and the antioxidant system in salivary glands of rats with experimental chronic kidney disease

Nogueira FN, Romero AC, Pedrosa MDS, Ibuki FK, Bergamaschi CT

Arch Oral Biol. 2020 Mar 20;113:104709. doi: 10.1016/j.archoralbio.2020.104709. [Epub ahead of print]

Abstract

OBJECTIVE:

This study aims to analyze the presence of oxidative stress and activity of the antioxidant system in the parotid and submandibular salivary glands of rats with Chronic Kidney Disease (CKD).

DESIGN:

Sixteen male wistar rats were divided into two groups (n = 8, each): control rats and rats with CKD. CKD was induced by 5/6 nephrectomy. Blood urea nitrogen and serum creatinine clearance were quantified. Malondialdehyde, superoxide dismutase, glutathione peroxidase, glutathione reductase, catalase, total antioxidant status, ascorbic acid, α-tocopherol, superoxide anion, and hydrogen peroxide concentrations were assessed.

RESULTS:

In CKD rats, blood urea nitrogen, serum creatinine, and proteinuria concentrations were increased, while creatinine clearance was reduced. In the submandibular gland, superoxide anion concentration was increased significantly (p < 0.05). Hydrogen peroxide and superoxide anion concentrations were reduced in the parotid gland. CKD rats presented increased malondialdehyde concentration, total antioxidant status, superoxide dismutase, and glutathione reductase activities only in the parotid gland (p < 0.05).

CONCLUSION:

Oxidative stress and changes in the antioxidant system were found in the parotid and submandibular salivary glands in an experimental model of CKD induced by 5/6 nephrectomy.

Read More

Tocol Prophylaxis for Total-body Irradiation: A Proteomic Analysis in Murine Model.

Rosen E, Fatanmi OO, Wise SY, Rao VA, Singh VK

Health Phys. 2020 Mar 20. doi: 10.1097/HP.0000000000001221. [Epub ahead of print]

Abstract

The aim of this study was to analyze the changes in mouse jejunum protein expression in response to prophylactic administration of two promising tocols, γ-tocotrienol (GT3) and α-tocopherol succinate (TS), as radiation countermeasures before irradiation to elucidate the molecular mechanism(s) of their radioprotective efficacy. Mice were administered GT3 or TS (200 mg kg) subcutaneously 24 h prior to exposure to 11 Gy Co γ-radiation, a supralethal dose for mice. Jejunum was harvested 24 h post-irradiation. Results of the two-dimensional differential in-gel electrophoresis (2D-DIGE), coupled with mass spectrometry, and advanced bioinformatics tools suggest that the tocols have a corresponding impact on expression of 13 proteins as identified by mass spectrometry. Ingenuity Pathway Analysis (IPA) reveals a network of associated proteins involved in inflammatory response, organismal injury and abnormalities, and cellular development. Relevant signaling pathways including actin cytoskeleton signaling, RhoA signaling, and Rho family GTPase were identified. This study reveals the major proteins, pathways, and networks involved in preventing the radiation-induced injury in gut that may be contributing to enhanced survival.

Read More