Emerging evidence supports that prostate cancer originates from a rare subpopulation of cells, namely prostate cancer stem cells (CSCs). Conventional therapies for prostate cancer are believed to mainly target the majority of differentiated tumor cells but spare CSCs, which may account for the subsequent disease relapse after treatment. Therefore, successful elimination of CSCs may be an effective strategy to achieve complete remission from this disease. Gamma-tocotrienols (gamma-T3) is one of the vitamin-E constituents, which have been shown to have anticancer effects against a wide range of human cancers. Recently, we have reported that gamma-T3 treatment not only inhibits prostate cancer cell invasion but also sensitizes the cells to docetaxel-induced apoptosis, suggesting that gamma-T3 may be an effective therapeutic agent against advanced stage prostate cancer. Here, we demonstrate for the first time that gamma-T3 can downregulate the expression of prostate CSC markers (CD133/CD44) in androgen-independent prostate cancer cell lines (PC-3 and DU145), as evident from Western blotting analysis. Meanwhile, the spheroid formation ability of the prostate cancer cells was significantly hampered by gamma-T3 treatment. In addition, pretreatment of PC-3 cells with gamma-T3 was found to suppress tumor initiation ability of the cells. More importantly, although CD133-enriched PC-3 cells were highly resistant to docetaxel treatment, these cells were as sensitive to gamma-T3 treatment as the CD133-depleted population. Our data suggest that gamma-T3 may be an effective agent in targeting prostate CSCs, which may account for its anticancer and chemosensitizing effects reported in previous studies.
Monthly Archives: November 2011
Protective effect of dietary tocotrienols against infection and inflammation-induced hyperlipidemia: An in vivo and in silico study
Salman Khan M, Akhtar S, Al-Sagair OA, Arif JM.
Phytother Res. 2011 Nov;25(11):1586-95. Epub 2011 Mar 11.
Currently used hypolipidemic drugs, Fluvastatin and Atorvastatin, act via inhibiting the rate-limiting enzyme 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase of the mevalonate pathway. The associated severe side-effects of these statins led us to explore the therapeutic potentials of naturally occurring Tocomin (mixture of dietary α-, β-, γ- and δ-tocotrienols). Tocomin (10 mg) was orally administered daily for 10 days before and 12 h after bacterial lipopolysaccharide (200 μg) or 24 h after zymosan (20 mg) or turpentine (0.5 mL) to Syrian hamsters. The data showed that Tocomin significantly reduced the levels of plasma and lipoprotein lipids, cholesterol, apoB, small dense (sd)-LDL as well as LDL in the hyperlipidemia-induced hamsters. Further, the mechanism of action of α-, β-, γ- and δ-tocotrienols was validated by docking studies with HMG-CoA reductase enzyme using the Molegro Virtual Docker. The inhibition of HMG-CoA reductase predicted in terms of MolDockScore and interaction energy suggest the comparative potential in the descending order: Atorvastatin > Fluvastatin ~ δ > γ > β > α. The results favor the daily intake of naturally occurring tocotrienols as dietary supplement in the prevention and treatment of infection/inflammation induced dyslipidemia compared with the hypolipidemic drugs.
Tocotrienol rich fraction (TRF) supplementation protects against oxidative DNA damage and improves cognitive functions in Wistar rats
Taridi NM, Yahaya MF, Teoh SL, Latiff AA, Ngah WZ, Das S, Mazlan M.
Clin Ter. 2011;162(2):93-8.
AIM: Oxidative stress is caused by imbalance between the productions of reactive oxygen species (ROS) and antioxidant defense mechanisms. Palm oil antioxidants such as tocotrienol rich fraction (TRF) is known to have neuroprotective effects on neurones by acting against free radical induced neuronal cell death. This study was undertaken to elucidate the effect of TRF on oxidative DNA damage and cognitive functions in experimental rats.
MATERIALS AND METHODS: A total of 20 male Wistar rats (aged 3 months) were divided into 2 groups: (i) control group fed with distilled water and (ii) experimental group fed with TRF (200 mg/ kg body weight) for 8 months. DNA damage was determined using Comet assay. Antioxidant enzymes like superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) were assessed in the blood. The Morris Water Maze (MWM) test was used to evaluate the cognitive functions.
RESULTS: DNA damage was significantly reduced in the experimental group supplemented with TRF compared to the control group (p <0.05). In the group supplemented with TRF, the percentage of DNA damage was 2.87 ± 0.48% compared to 5.96 ± 0.43% in the control group. SOD, GPx, and CAT enzyme activities increased in experimental group. Results from MWM showed improvement in cognitive functions as determined by latency to target platform, swim path and average speed between TRF and control groups.
CONCLUSIONS: Continuous supplementation of TRF for 8 months reduced DNA damage and exhibited positive influence in spatial learning and memory.
Tocotrienol vitamin E protects against preclinical canine ischemic stroke by inducing arteriogenesis
Rink C, Christoforidis G, Khanna S, Peterson L, Patel Y, Khanna S, Abduljalil A, Irfanoglu O, Machiraju R, Bergdall VK, Sen CK
J Cereb Blood Flow Metab. 2011 Nov;31(11) Epub 2011 Jun 15.
Vitamin E consists of tocopherols and tocotrienols, in which α-tocotrienol is the most potent neuroprotective form that is also effective in protecting against stroke in rodents. As neuroprotective agents alone are insufficient to protect against stroke, we sought to test the effects of tocotrienol on the cerebrovascular circulation during ischemic stroke using a preclinical model that enables fluoroscopy-guided angiography. Mongrel canines (mean weight=26.3±3.2 kg) were supplemented with tocotrienol-enriched (TE) supplement (200 mg b.i.d, n=11) or vehicle placebo (n=9) for 10 weeks before inducing transient middle cerebral artery (MCA) occlusion. Magnetic resonance imaging was performed 1 hour and 24 hours post reperfusion to assess stroke-induced lesion volume. Tocotrienol-enriched supplementation significantly attenuated ischemic stroke-induced lesion volume (P<0.005). Furthermore, TE prevented loss of white matter fiber tract connectivity after stroke as evident by probabilistic tractography. Post hoc analysis of cerebral angiograms during MCA occlusion revealed that TE-supplemented canines had improved cerebrovascular collateral circulation to the ischemic MCA territory (P<0.05). Tocotrienol-enriched supplementation induced arteriogenic tissue inhibitor of metalloprotease 1 and subsequently attenuated the activity of matrix metalloproteinase-2. Outcomes of the current preclinical trial set the stage for a clinical trial testing the effects of TE in patients who have suffered from transient ischemic attack and are therefore at a high risk for stroke.
Assessment of the protective effects of oral tocotrienols in arginine chronic-like pancreatitis
González AM, Garcia T, Samper E, Rickmann M, Vaquero EC, Molero X.
Am J Physiol Gastrointest Liver Physiol. 2011 Nov;301(5):G846-55. Epub 2011 Aug 18.
Tocotrienols exhibit anti-inflammatory properties over macrophages and promote cytotoxicity in activated pancreatic stellate cells, suggesting that they may limit chronic pancreatitis progression. We aimed to quantitate the effect of oral tocotrienols on a rat model of chronic pancreatic injury. Chronic-like pancreatitis was induced by repeated arginine pancreatitis. Palm oil tocotrienol-rich fraction (TRF) was given by gavage before and after pancreatitis inductions. Amylase and hydroxyproline were determined in pancreatic homogenates; collagen, fibronectin, α-smooth muscle actin (SMA), glial fibrillary acidic protein (GFAP), and phosphorylated Smad3 were assessed by Western blotting. Transforming growth factor (TGF)-β1 was measured in plasma. Morphological assessment included light microscopy, fibrosis area fraction, and collagen network fractal analysis. Arginine pancreatitis induced pancreatic atrophy and increased hydroxyproline that ameliorated after TRF. Arginine increased TGF-β1 (185 ± 40 vs. 15 ± 2 ng/ml; P <0.01) that was blunted by TRF (53 ± 19; P < 0.01). TRF reduced protease and Smad3 activation, collagen, and fibronectin. α-SMA increased and GFAP diminished in arginine pancreatitis, consistent with long-term stellate cell activation, and TRF reverted these changes to basal. Arginine pancreatitis increased fibrosis area fraction (4.5 ± 0.3% vs. 0.2 ± 0.2%), collagen network complexity (fractal dimension 1.52 ± 0.03 vs. 1.42 ± 0.01; P < 0.001), and inhomogeneity (lacunarity 0.63 ± 0.03 vs. 0.40 ± 0.02; P < 0.001), which were all reduced by TRF (1.3 ± 0.4%, 1.43 ± 0.02%, and 0.51 ± 0.03%, respectively; P < 0.01). Best correlation coefficients were obtained when comparing fibrosis area fraction with lacunarity (r = 0.88) and both parameters with pancreatic weight (r = -0.91 and -0.79, respectively). TRF administered only before pancreatitis best, but not fully, recapitulated the beneficial effects of TRF. Tocotrienols improve quantitative measures of chronic pancreatic damage. They may be of benefit in human chronic pancreatitis.
Tocotrienols, like tocopherols, are members of the vitamin E family. While tocopherols (T) have been studied intensively, only recently havetocotrienols (T3) received increased attention due to their special health benefits. However, these positive attributes of T3 are probably lost as a result of degradation during food storage and processing, and there is little information about their oxidation products. Of particular interest are the oxidation products of α-tocotrienol (α-T3) as this is the least thermostable T3 isomer with the highest rate of degradation. The objective of this study was therefore to develop a reliable method for the determination of the most important oxidation products of α-T3 along with other tocochromanol isomers. We developed a high-performance liquid chromatography method with diode array detection, fluorescence detection, and a particle beam interface electron impact mass spectroscopy in order to separate the most important oxidation products of α-T3 (α-T3 spirodimers/spirotrimers, α-tocotrienoldihydroxy dimer, 7-formyl-β-tocotrienol (7-FβT3), 5-formyl-γ-tocotrienol (5-FγT3), α-tocotrienolquinone (α-T3Q), and α-T3Q dimers and α-tocotrienolquinone epoxides (α-T3QE)) from eight tocochromanol isomers. Furthermore, we sought to identify the as yet unknown oxidation products 5-FγT3, 7-FβT3, α-T3Q-dimer, and α-T3QE. Of these, 5-FγT3 was fully characterized by Fourier transform infrared spectroscopy and (1)H and (13)C nuclear magnetic resonance spectroscopy.
The objective of this study was to optimize a method to investigate the occurrence and to quantify the full isomeric composition of vitamin E (α-, β-, γ- and δ-tocopherols and tocotrienols) in 6 vegetables (raw and cooked), 3 herbs/spices, raw and cooked eggs, vegetable oils (canola, olive and soybean), flaxseed and sorghum (flour and seeds) and soy (flour) by HPLC with fluorescence detection. Different conditions of extraction and analysis were tested. The optimized method consisted of direct extraction with solvent (hexane:ethyl acetate, 85:15, v/v). For analysis normal phase column was used with mobile phase consisting of hexane:isopropanol:acetic acid (98.9:0.6:0.5) with isocratic elution and fluorescence detection. Excellent separation of all isomers was obtained along with adequate quantification in the foods analyzed. Recovery rates of standards ranged from 91.3 to 99.4%. The linearity range for each isomer varied from 2.5 to 137.5 ng/mL (R² greater than 0.995 in all cases). Detection limits ranged from 21.0 to 48.0 ng/mL for tocopherols and from 56.0 to 67.0 ng/mL for tocotrienols, while quantification limits ranged from 105.0 to 240.0 ng/mL for tocopherols and from 280.0 to 335.0 ng/mL for tocotrienols. The optimized method was considered simple, fast and reliable, and also preserved vitamin E isomers when compared to validated methods involving saponification.
Delivery of the vitamin E compound tocotrienol to cancer cells
Dufès C.
Ther Deliv. 2011 Nov;2(11):1385-9.
Tocotrienol, a member of the vitamin E family of compounds, is currently receiving increased attention owing to its highly promising anticancer effects. However, its potential in cancer therapy is limited by its poor bioavailability and its inability to specifically reach tumors at therapeutic concentrations after intravenous administration. In order to address these problems, various delivery strategies have been proposed, such as the inclusion of tocotrienol in gamma-cyclodextrins, prodrugs and emulsions, and entrapment in lipid nanoparticles and vesicles. Among these approaches, we have demonstrated that the entrapment of tocotrienol within vesicles bearing transferrin, whose receptors are overexpressed on numerous cancer cells, significantly improved the uptake by cancer cells overexpressing transferrin receptors. Consequently, the intravenous administration of tocotrienol entrapped in transferrin-bearing vesicles led to tumor regression and even complete tumor suppression in some cases in a murine tumor model, as well as improvement of animal survival. Transferrin-bearing vesicles are therefore highly promising for the delivery oftocotrienol to cancer cells in vitro and in vivo, and should be further investigated to optimize the anticancer therapeutic effect of tocotrienol.
Vitamin E homologues, specifically tocotrienols, have been shown to have favorable effects on bone. They possess properties that are indicative of anti-resorptive activity, suggesting the potential for vitamin E in preventing bone loss. To investigate the anti-resorptive activity of the various vitamin E homologues, we cultured human osteoclasts from blood-derived CD14+ cells on collagen, dentin, and calcium phosphate substrates, with some samples supplemented with vitamin E homologues in their cell culture medium. These were compared to the clinically used bisphosphonate, pamidronate. Compounds were either added at the start of culture to study effects on osteoclast formation, or at the start of osteoclastic resorption to determine their effects on activity. The alpha- and gamma-tocotrienol isomers inhibited osteoclast formation without consequent reduction in total cell number. Only gamma-tocotrienol inhibited osteoclast activity without toxicity. Gamma-tocotrienol was the most potent inhibitor of both osteoclast formation and activity and requires further investigation into its anti-resorptive effects on bone.