Triton WR1339, an inhibitor of lipoprotein lipase, decreases vitamin E concentration in some tissues of rats by inhibiting its transport to liver

Abe C, Ikeda S, Uchida T, Yamashita K, Ichikawa T.

J Nutr. 2007 Feb;137(2):345-50.

The aim of this experiment was to clarify the contribution of the alpha-tocopherol transfer activity of lipoprotein lipase (LPL) to vitamin E transport to tissues in vivo. We studied the effect of Triton WR1339, which prevents the catabolism of triacylglycerol-rich lipoproteins by LPL on vitamin E distribution in rats. Vitamin E-deficient rats fed a vitamin E-free diet for 4 wk were injected with Triton WR1339 and administered by oral gavage an emulsion containing 10 mg of alpha-tocopherol, 10 mg of gamma-tocopherol, or 29.5 mg of a tocotrienol mixture with 200 mg of sodium taurocholate, 200 mg of triolein, and 50 mg of albumin. alpha-Tocopherol was detected in the serum and other tissues of the vitamin E-deficient rats, but gamma-tocopherol, alpha- and gamma-tocotrienol were not detected. Triton WR1339 injection elevated (P<0.05) the serum alpha-tocopherol concentration and inhibited (P<0.05) the elevation of alpha-tocopherol concentration in the liver, adrenal gland, and spleen due to the oral administration of alpha-tocopherol. Neither alpha-tocopherol administration nor Triton WR1339 injection affected (P>or=0.05) the alpha-tocopherol concentration in the perirenal adipose tissue, epididymal fat, and soleus muscle despite a high expression of LPL in the adipose tissue and muscle. These data show that alpha-tocopherol transfer activity of LPL in adipose tissue and muscle is not important for alpha-tocopherol transport to the tissue after alpha-tocopherol intake or that the amount transferred is small relative to the tissue concentration. Furthermore, Triton WR1339 injection tended to elevate the serum gamma-tocopherol (P=0.071) and alpha-tocotrienol (P=0.053) concentrations and lowered them (P<0.05) in the liver and adrenal gland of rats administered gamma-tocopherol or alpha-tocotrienol. These data suggest that lipolysis of triacylglycerol-rich chylomicron by LPL is necessary for postprandial vitamin E transport to the liver and subsequent transport to the other tissues.

Because of the individual biological effects and the uncertain or missing information on levels of tocopherols (T) and tocotrienols (T3) in foods frequently consumed in Hawaii, 79 food items (50 in duplicate) were analyzed for alpha-, beta-, gamma-, and delta-tocopherol (alphaT, betaT, gammaT, and deltaT) and alpha-, beta-, gamma-, and delta-tocotrienol (alphaT3, betaT3, gammaT3, and deltaT3) in addition to alpha-tocopheryl acetate (alphaTac). Foods from local markets were stored according to usual household habits, freeze-dried, homogenized, and extracted three times with hexane containing butylated hydroxytoluene as a preservative and tocol as an internal standard. A normal-phase high-pressure liquid chromatography system was applied with fluorescence and photodiode array detection that resulted in baseline separation of all eight analytes and the internal standard tocol (To). The sum of all E vitamer concentrations, or total E vitamers (TEV), in all foods analyzed ranged an average from 0.6 to 828 mg/kg (T < or = 542 mg/kg and T3 < or = 432 mg/kg) and showed the following ranges: oils, 497-828 mg/kg (mainly alphaT and gammaT); margarines, 359-457 mg/kg (mainly gammaT); salad dressings, 20-291 mg/kg (mainly gammaT, except alphaT when soy oil was the main ingredient); cookies, 54-138 mg/kg (mainly gammaT); snacks, 101-220 mg/kg (mainly gammaT); nuts, 22-201 mg/kg (mainly alphaT); vegetables, 2-152 mg/kg (mainly alphaT); pasta, 24-90 mg/kg; cereals, 4-56 mg/kg (mainly betaT3 followed by alphaT); fish, 2-39 mg/kg (mainly alphaT); fried tofu, 64 mg/kg (mainly gammaT); breads, 20-22 mg/kg (mainly betaT3); fat-free mayonnaise, 5 mg/kg (mainly alphaT); poi (fermented taro root), 2 mg/kg (mostly alphaT); and fruits, 2 (papaya) to 13 mg/kg (canned pumpkin) with alphaT predominating. Cereals fortified with alphaTac ranked third and eighth among all foods assayed regarding alphaT and TEV levels, respectively. As compared to the few data available in the literature, our values agreed with some (corn flakes, mango fruit, fat-free mayonnaise, dry-roasted macadamia nuts, dry-roasted peanuts, mixed nuts, spaghetti/marinara pasta sauce, oils, and red bell pepper) but differed for many other items. Our results provide new information on the E vitamer content in foods, emphasize the vast differences of bioactivities of individual E vitamers, and confirm the need for analyses of foods consumed in specific study populations.

To examine the distribution of rice bran tocotrienol (T3), we gave rice bran T3 to rats after considering an acceptable daily intake of vitamin E for humans. Male SD rats (5 weeks of age) were fed for 3 weeks on a commercial diet containing 6.4 mg of vitamin E per 100 g wt and additively received vitamin E or the vehicle (vitamin E-free corn oil) by oral intubation. The animals were randomly divided into 4 groups depending on the type of test diet: control (vehicle), non-T3 (no T3 + 4.3 mg of tocopherol (TOC)/kg body weight (b.w.)/day), low-T3 (0.8 mg T3 + 3.5 mg TOC/kg b.w./day), and high-T3 (3.2 mg T3 + 1.1 mg TOC/kg b.w./day). The control rats and rats in the non-T3, low-T3, and high-T3 groups took 4.3 and 8.6 mg of vitamin E/kg b.w./day, respectively. Rice bran gamma-T3 was significantly distributed to the adipose tissue and increased from 1.1 to 10.2 nmol/g of adipose tissue according to the rice bran T3 intake.

Gamma-tocotrienol inhibits nuclear factor-kappaB signaling pathway through inhibition of receptor-interacting protein and TAK1 leading to suppression of antiapoptotic gene products and potentiation of apoptosis

Ahn KS, Sethi G, Krishnan K, Aggarwal BB.

J Biol Chem. 2007 Jan 5;282(1):809-20. Epub 2006 Nov 17.

Unlike the tocopherols, the tocotrienols, also members of the vitamin E family, have an unsaturated isoprenoid side chain. In contrast to extensive studies on tocopherol, very little is known about tocotrienol. Because the nuclear factor-kappaB (NF-kappaB) pathway has a central role in tumorigenesis, we investigated the effect of gamma-tocotrienol on the NF-kappaB pathway. Although gamma-tocotrienol completely abolished tumor necrosis factor alpha (TNF)-induced NF-kappaB activation, a similar dose of gamma-tocopherol had no effect. Besides TNF, gamma-tocotrienol also abolished NF-kappaB activation induced by phorbol myristate acetate, okadaic acid, lipopolysaccharide, cigarette smoke, interleukin-1beta, and epidermal growth factor. Constitutive NF-kappaB activation expressed by certain tumor cells was also abrogated by gamma-tocotrienol. Reducing agent had no effect on the gamma-tocotrienol-induced down-regulation of NF-kappaB. Mevalonate reversed the NF-kappaB inhibitory effect of gamma-tocotrienol, indicating the role of hydroxymethylglutaryl-CoA reductase. Gamma-tocotrienol blocked TNF-induced phosphorylation and degradation of IkappaBalpha through the inhibition of IkappaBalpha kinase activation, thus leading to the suppression of the phosphorylation and nuclear translocation of p65. gamma-Tocotrienol also suppressed NF-kappaB-dependent reporter gene transcription induced by TNF, TNFR1, TRADD, TRAF2, TAK1, receptor-interacting protein, NIK, and IkappaBalpha kinase but not that activated by p65. Additionally, the expressions of NF-kappaB-regulated gene products associated with antiapoptosis (IAP1, IAP2, Bcl-xL, Bcl-2, cFLIP, XIAP, Bfl-1/A1, TRAF1, and Survivin), proliferation (cyclin D1, COX2, and c-Myc), invasion (MMP-9 and ICAM-1), and angiogenesis (vascular endothelial growth factor) were down-regulated by gamma-tocotrienol. This correlated with potentiation of apoptosis induced by TNF, paclitaxel, and doxorubicin. Overall, our results demonstrate that gamma-tocotrienol inhibited the NF-kappaB activation pathway, leading to down-regulation of various gene products and potentiation of apoptosis.

Read Full Article Here

Tocochromanols encompass a group of compounds with vitamin E activity essential for human nutrition. They accumulate in photooxidative organisms, e.g. in some algae and in plants, where they localize to thylakoid membranes and plastoglobules of chloroplasts. Tocochromanols contain a polar chromanol head group with a long isoprenoid side chain. Depending on the nature of the isoprenoid chain, tocopherols (containing a phytyl chain) or tocotrienols (geranylgeranyl chain) can be distinguished in plants. The tocochromanol biosynthetic pathway has been studied in Arabidopsis and Synechocystis in recent years, and the respective mutants and genes were isolated. Mutant characterization revealed that tocopherol protects lipids in photosynthetic membranes and in seeds against oxidative stress. In addition to its antioxidant characteristics, tocopherol was shown be involved in non-antioxidant functions such as primary carbohydrate metabolism. A considerable proportion of tocopherol is synthesized from free phytol suggesting that excess amounts of phytol released from chlorophyll breakdown during stress or senescence might be deposited in the form of tocopherol in chloroplasts.

Rice bran is abundant in bioactive compounds including tocotrienol (T3, unsaturated vitamin E). T3 has been reported about its potential functionalities (i.e., antiangiogenic effect), so much attention has been paid on usability of rice bran T3. Hence, we developed a rapid screening method for T3-rich rice bran by one-step equilibrium direct solvent extraction followed by normal phase high-performance liquid chromatography (HPLC). The method gave high-extraction rate of rice bran T3 and tocopherol (above 90%), and the determination of vitamin E by HPLC was completed within 15 min. Using the method, an average of total T3 content in 109 kinds of rice bran samples was 830 mug/g dry wt. Kouchi-Akamai, Joushuu, and Wataribune were found as the T3-rich rice bran varieties (1350-1430 microg T3/g dry wt). According to T3 ratio against total vitamin E (wt %), the average ratio was 61%. Hirayama, Moritawase, and Kaneko were found as the varieties having the highest T3 ratio (80-86%). Since T3 content in Koshihikari rice bran (the leading variety in Japan) was a little above the average, we cross-fertilized Koshihikari with T3-rich varieties and found that T3 content or ratio in F1 was improved compared with Koshihikari. The varieties found rich in T3 could be used for nutraceutical purpose.

Dose dependent elevation of plasma tocotrienol levels and its effect on arterial compliance, plasma total antioxidant status, and lipid profile in healthy humans supplemented with tocotrienol rich vitamin E

Rasool AH, Yuen KH, Yusoff K, Wong AR, Rahman AR.

J Nutr Sci Vitaminol (Tokyo). 2006 Dec;52(6):473-8.

Tocotrienols are a class of vitamin E reported to be potent antioxidants, besides having the ability to inhibit the HMG-CoA reductase enzyme. This study assessed the effects of 3 doses of tocotrienol-rich vitamin E (TRE) on plasma tocotrienol isomer concentration, arterial compliance, plasma total antioxidant status (TAS), aortic systolic blood pressure (ASBP), serum total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C) in healthy males.

Methodology: This randomised, blinded end-point, placebo-controlled clinical trial with a parallel design involved 36 healthy male subjects who took either an oral placebo or TRE at doses of 80, 160 or 320 mg daily for 2 mo. Baseline and end-of-treatment measurements of vitamin E concentration, arterial compliance [assessed by aortic femoral pulse wave velocity (PWV) and augmentation index (AI)], ASBP, plasma TAS, serum TC and LDL-C were taken.

Results: Baseline tocotrienol isomer concentrations were low and not detectable in some subjects. Upon supplementation, all TRE-treated groups showed significant difference from placebo for their change in alpha, gamma and delta tocotrienol concentrations from baseline to end of treatment. There was a linear dose and blood level relationship for all the isomers. There was no significant difference between groups for their change in PWV, AI, plasma TAS, ASBP, TC or LDL-C from baseline to end of treatment. Groups 160 mg (p = 0.024) and 320 mg (p = 0.049) showed significant reductions in their ASBP. Group 320 mg showed a significant 9.2% improvement in TAS.

Conclusion: TRE at doses up to 320 mg daily were well tolerated. Treatment significantly increased alpha, delta, and gamma tocotrienol concentrations but did not significantly affect arterial compliance, plasma TAS, serum TC or LDL-C levels in normal subjects.

Read Full Article Here

More than 80 years after the discovery of the essentiality of vitamin E for mammals, the molecular basis of its action is still an enigma. From the eight different forms of vitamin E, only alpha-tocopherol is retained in the body. This is in part due to the specific selection of RRR-alpha-tocopherol by the alpha-tocopherol transfer protein and in part by its low rate of degradation and elimination compared with the other vitamers. Since the tocopherols have comparable antioxidant properties and some tocotrienols are even more effective in scavenging radicals, the antioxidant capacity cannot be the explanation for its essentiality, at least not the only one. In the last decade, a high number of so-called novel functions of almost all forms of vitamin E have been described, including regulation of cellular signalling and gene expression. alpha-Tocopherol appears to be most involved in gene regulation, whereas gamma-tocopherol appears to be highly effective in preventing cancer-related processes. Tocotrienols appear to be effective in amelioration of neurodegeneration. Most of the novel functions of individual forms of vitamin E have been demonstrated in vitro only and require in vivo confirmation. The distinct bioactivities of the various vitamers are discussed, considering their metabolism and the potential functions of metabolites.

Dose dependent elevation of plasma tocotrienol levels and its effect on arterial compliance, plasma total antioxidant status, and lipid profile in healthy humans supplemented with tocotrienol rich vitamin E

Rasool AH, Yuen KH, Yusoff K, Wong AR, Rahman AR.

J Nutr Sci Vitaminol (Tokyo). 2006 Dec;52(6):473-8.

Published

Objectives: To assess the effects of 3 doses of tocotrienol-rich vitamin E (TRE) on plasma tocotrienol isomer concentration, arterial compliance, plasma total antioxidant status (TAS), aortic systolic blood pressure (ASBP), serum total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C) in healthy males.

Study design: Randomised, blinded end-point, placebo-controlled

Subjects: Healthy male volunteers

Intervention: Tocotrienol-rich Vitamin E at 80 mg, 160 mg or 320 mg versus placebo

Primary outcome: Plasma tocotrienol isomer concentration, arterial compliance, plasma total antioxidant status (TAS), aortic systolic blood pressure (ASBP), serum total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C)

Methodology: This randomised, blinded end-point, placebo-controlled clinical trial with a parallel design involved 36 healthy male subjects who took either an oral placebo or TRE at doses of 80, 160 or 320 mg daily for 2 mo. Baseline and end-of-treatment measurements of vitamin E concentration, arterial compliance [assessed by aortic femoral pulse wave velocity (PWV) and augmentation index (AI)], ASBP, plasma TAS, serum TC and LDL-C were taken.

Results: Baseline tocotrienol isomer concentrations were low and not detectable in some subjects. Upon supplementation, all TRE-treated groups showed significant difference from placebo for their change in alpha, gamma and delta tocotrienol concentrations from baseline to end of treatment. There was a linear dose and blood level relationship for all the isomers. There was no significant difference between groups for their change in PWV, AI, plasma TAS, ASBP, TC or LDL-C from baseline to end of treatment. Groups 160 mg (p = 0.024) and 320 mg (p = 0.049) showed significant reductions in their ASBP. Group 320 mg showed a significant 9.2% improvement in TAS.

Conclusion: TRE at doses up to 320 mg daily were well tolerated. Treatment significantly increased alpha, delta, and gamma tocotrienolconcentrations but did not significantly affect arterial compliance, plasma TAS, serum TC or LDL-C levels in normal subjects.

Read More

Proposed mechanisms for red palm oil induced cardioprotection in a model of hyperlipidaemia in the rat

Esterhuyse JS, van Rooyen J, Strijdom H, Bester D, du Toit EF.

Prostaglandins Leukot Essent Fatty Acids. 2006 Dec;75(6):375-84.

High-cholesterol diets alter myocardial and vascular NO-cGMP signaling and have been implicated in ischaemic/reperfusion injury. We investigated the effects of dietary red palm oil (RPO) containing fatty acids, carotonoids, tocopherols and tocotrienols on myocardial ischaemic tolerance and NO-cGMP pathway function in the rat. Wistar rats were fed a standard rat chow+/-RPO, or a standard rat chow+cholesterol+/-RPO diet. Myocardial mechanical function and NO-cGMP signaling pathway intermediates were determined before, during and after 25 min ischaemia. RPO-supplementation improved aortic output recovery and increased myocardial ischaemic cGMP concentrations. Simulated ischaemia (hypoxia) increased cardiomyocyte nitric oxide levels in the two RPO supplemented groups, but not in control non-supplemented groups. RPO supplementation also increased hypoxic nitric oxide levels in the control diet fed, but not the cholesterol fed rats. These data suggest that dietary RPO may improve myocardial ischaemic tolerance by increasing bioavailability of NO and improving NO-cGMP signaling in the heart.