Vitamin E for the treatment of children with hepatitis B e antigen-positive chronic hepatitis: A systematic review and meta-analysis.

Fiorino S, Bacchi-Reggiani ML, Leandri P, Loggi E, Andreone P.

World J Hepatol. 2017 Feb 28;9(6):333-342. doi: 10.4254/wjh.v9.i6.333.

Abstract

To assess vitamin E efficacy, defined as its ability to induce hepatitis B e antigen (HBeAg) seroconversion, in children with HBeAg-positive persistent hepatitis. In July 2016, we extracted articles published in MEDLINE and the Cochrane Library using the following search terms: “chronic hepatitis B”, “children”, “childhood”, “therapy”, “treatment”, “vitamin E”, “tocopherols”, “tocotrienols“. Only randomized controlled trials (RCTs) published in English language were collected. Three RCTs met inclusion criteria and were considered in the present meta-analysis. Overall, 23/122 children in the treatment group underwent HBeAg seroconversion vs 3/74 in the control group (OR = 3.96, 95%CI: 1.18-13.25, P = 0.025). Although our meta-analysis has several limits, including the very small number of available studies and enrolled children with HBeAg positivity-related hepatitis, it suggests that vitamin E use may enhance the probability to induce HBeAg seroconversion in these patients. Further well designed and adequately sized trials are required to confirm or deny these very preliminary results.

Read More

Antioxidant effect of vitamin E and 5-aminosalicylic acid on acrylamide induced kidney injury in rats.

Rajeh NA, Al-Dhaheri NM.

Saudi Med J. 2017 Feb;38(2):132-137. doi: 10.15537/smj.2017.2.16049.

Abstract

OBJECTIVES:

To explore renal toxicity caused by sub-acute exposure of acrylamide and to study the protective effect of 5-Aminosalicylic acid (5-ASA) and Vitamin E (vit-E)on Acrylamide (ACR) induced renal toxicity. Methods: This study was conducted at King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia, between August and November 2015. A total of 49 adult Wistar rats (250 ± 20g) aged 60 days were kept in a controlled environment and used in the present study. The rats were divided into 7 groups (control, ACR alone, ACR+5-ASA, ACR+vit-E, ACR+ASA+vit-E, vit-E alone, and ASA alone). After 5 days of ACR oral gavage treatment, the rats were observed for 24 hours then killed. Histopathology for the kidney and lactate dehydrogenase assay were carried out.  Results: Acrylamide produced significant pathological changes in the kidney with acute tubular necrosis in the distal tubules that could be reversed by concomitant injection of rat with 5-ASA. Together with vitamin E, 5-ASA, showed maximum renal protection. No statistically significant difference was observed in either body weights or lactate dehydrogenase activity of ACR treated rats.  Conclusion: Acrylamide exposure leads to adverse clinical pathologies of renal tubules, which were reversed by a concomitant treatment with 5-ASA and vitamin-E.

Read More

γ-Tocotrienol prevents cell cycle arrest in aged human fibroblast cells through p16INK4a pathway.

Zainuddin A, Chua KH, Tan JK, Jaafar F, Makpol S.

J Physiol Biochem. 2017 Feb;73(1):59-65. doi: 10.1007/s13105-016-0524-2. Epub 2016 Oct 14.

Abstract

Human diploid fibroblasts (HDFs) proliferation in culture has been used as a model of aging at the cellular level. Growth arrest is one of the most important mechanisms responsible for replicative senescence. Recent researches have been focusing on the function of vitamin E in modulating cellular signaling and gene expression. Therefore, the aim of this study was to elucidate the effect of palm γ-tocotrienol (vitamin E) in modulating cellular aging through p16INK4a pathway in HDF cells. Primary culture of senescent HDFs was incubated with 70 μM of palm γ-tocotrienol for 24 hours. Silencing of p16INK4a was carried out by siRNA transfection. RNA was extracted from the different treatment groups and gene expression analysis was carried out by real-time reverse transcription polymerase chain reaction. Proteins that were regulated by p16INK4a were determined by western blot technique. The finding of this study showed that p16INK4a mRNA was overexpressed in senescent HDFs, and hypophosphorylated-pRb and cyclin D1 protein expressions were increased (p < 0.05). However, downregulation of p16INK4a and hypophosphorylated-pRb and cyclin D1 protein expressions (p < 0.05) by γ-tocotrienol led to modulation of the cell cycle regulation during cellular aging. In conclusion, senescent HDFs showed change in biological process specifically in cell cycle regulation with elevated expression of genes and proteins which may contribute to cell cycle arrest. Palm γ-tocotrienol may delay cellular senescence of HDFs by regulating cell cycle through downregulation of p16INK4a and hypophosphorylated-pRb and cyclin D1 protein expressions.

Read More

The Effects of Tocotrienol and Lovastatin Co-Supplementation on Bone Dynamic Histomorphometry and Bone Morphogenetic Protein-2 Expression in Rats with Estrogen Deficiency.

Chin KY, Abdul-Majeed S, Mohamed N, Ima-Nirwana S.

Nutrients. 2017 Feb 15;9(2). pii: E143. doi: 10.3390/nu9020143.

Abstract

Both tocotrienol and statins are suppressors of the mevalonate pathway. Supplementation of tocotrienol among statin users could potentially protect them against osteoporosis. This study aimed to compare the effects of tocotrienol and lovastatin co-supplementation with individual treatments on bone dynamic histomorphometric indices and bone morphogenetic protein-2 (BMP-2) gene expression in ovariectomized rats. Forty-eight female Sprague-Dawley rats were randomized equally into six groups. The baseline was sacrificed upon receipt. All other groups were ovariectomized, except for the sham group. The ovariectomized groups were administered orally daily with (1) lovastatin 11 mg/kg/day alone; (2) tocotrienol derived from annatto bean (annatto tocotrienol) 60 mg/kg/day alone; (3) lovastatin 11 mg/kg/day, and annatto tocotrienol 60 mg/kg/day. The sham and ovariectomized control groups were treated with equal volume of vehicle. After eight weeks of treatment, the rats were sacrificed. Their bones were harvested for bone dynamic histomorphometry and BMP-2 gene expression. Rats supplemented with annatto tocotrienol and lovastatin concurrently demonstrated significantly lower single-labeled surface, but increased double-labeled surface, mineralizing surface, mineral apposition rate and bone formation rate compared to individual treatments (p < 0.05). There was a parallel increase in BMP-2 gene expression in the rats receiving combined treatment (p < 0.05). The combination of annatto tocotrienol and lovastatin exerted either additively or synergistically on selected bone parameters. In conclusion, tocotrienol can augment the bone formation and mineralization in rats receiving low-dose statins. Supplementation of tocotrienol in statin users can potentially protect them from osteoporosis.

Read More

The effects of co-administration of pregabalin and vitamin E on neuropathic pain induced by partial sciatic nerve ligation in male rats.

Meymandi MS, Sepehri G, Abdolsamadi M, Shaabani M, Heravi G, Yazdanpanah O, Aghtaei MM.

Inflammopharmacology. 2017 Feb 23. doi: 10.1007/s10787-017-0325-4. [Epub ahead of print]

Abstract

OBJECTIVE:

This study was performed to evaluate the effect of pregabalin co-administration with vitamin E in Partial Sciatic Nerve Ligation (PSNL)-induced neuropathic pain in rats.

METHODS:

Male Wistar rats were randomly allocated as control, sham, and PSNL groups (n = 8). PSNL was induced by tight ligation of the sciatic nerve with a copper wire. On day 14th, the PSNL and sham operated rats received either pregabalin (1, 3, and 30 mg/kg), vitamin E (100 and 200 mg/kg), or their combination intraperitoneally. An antinociceptive effect was evaluated as latency times and Maximum possible Effect Percent (%MPE) using tail-flick test. Locomotor activity was evaluated by open-field test before PSNL surgery and then twice at the 14th days (before and after drug injection). Ligated nerves were removed on the 28th days after surgery for histological examinations.

RESULTS:

The time course of latency times and %MPE showed significant decrease in PSNL but not in sham and control groups. Pregabalin (3 and 30 mg/kg) and vitamin E (100 and 200 mg/kg) caused significant increases in latency time in PSNL (but not sham) group compared to control group. Vitamin E 200 mg/kg increased significantly %MPE in PSNL group compared to sham group. In addition, the %MPE following combination treatment of pregabalin (30 mg/kg) and vitamin E (100 mg/kg) was significantly higher than both vitamin E and control group. Also combination of pregabalin with 100 mg/kg of vitamin E reversed Wallerian degeneration of sciatic nerve and the inflammatory responses to almost similar to sham group. Pregabalin and vitamin E did not affect locomotor activity.

CONCLUSION:

Our results showed antinociceptive effects of both vitamin E and pregabalin alone or in combination in PSNL rats and also neuroprotective properties without affecting locomotor activity.

Read More

Role of levothyroxine and vitamin E supplementation in the treatment of oxidative stress-induced injury and apoptosis of myocardial cells in hypothyroid rats.

Ye J, Zhong X, Du Y, Cai C, Pan T.

J Endocrinol Invest. 2017 Feb 17. doi: 10.1007/s40618-017-0624-z. [Epub ahead of print]

Abstract

OBJECTIVE:

To explore the underlying mechanism and treatment of myocardial injury caused by hypothyroidism, we evaluated oxidative stress in serum and myocardial tissue of hypothyroid rats. The effect of levothyroxine (LT4) replacement therapy and vitamin E (VitE) supplementation on oxidative stress-induced injury and apoptosis of myocardial tissue is examined.

METHODS:

Male Sprague-Dawley rats were divided into five groups: normal control group, propylthiouracil group (PTU group), LT4 treatment group (PTU + LT4 group), vitamin E treatment group (PTU + VitE group), and combined treatment group (PTU + LT4 + VitE group). Superoxide dismutase (SOD) activity and malondialdehyde (MDA) expression in serum and myocardium were determined. Myocardial apoptosis index (AI) in each group was determined by TUNEL assay.

RESULTS:

SOD levels in serum were significantly increased in PTU + VitE and PTU + LT4 + Vit E groups, as compared to that in PTU and PTU + LT4 groups (P < 0.05). MDA levels in serum and myocardial tissue were significantly lower in PTU + LT4, PTU + VitE, and PTU + LT4 + VitE groups, as compared to that in the PTU group (P < 0.05). Myocardial apoptosis was significantly increased in PTU and PTU + VitE groups as compared to that in the normal control group (P < 0.05), while it was significantly lower in PTU + LT4 and PTU + LT4 + VitE groups, as compared to that in the PTU group (P < 0.05).

CONCLUSION:

In this study, levothyroxine replacement therapy and vitamin E supplementation appeared to ameliorate myocardial apoptosis in hypothyroid rats, the mechanism of which appears to be related to improved thyroid function and reduced oxidative stress.

Read More

ACTION OF VITAMIN E ON EXPERIMENTAL SEVERE ACUTE LIVER FAILURE.

Miguel FM, Schemitt EG, Colares JR, Hartmann RM, Morgan-Martins MI, Marroni NP.

Arq Gastroenterol. 2017 Feb 13:0. doi: 10.1590/S0004-2803.201700000-03. [Epub ahead of print]

Abstract

BACKGROUND:

Severe Acute Liver Failure (ALF) is a life-threatening clinical syndrome characterized by hepatocyte necrosis, loss of hepatic architecture, and impairment of liver functions. One of the main causes of ALF is hepatotoxicity from chemical agents, which damage hepatocytes and result in increase of reactive oxygen species. The vitamin E isoform is the one with the strongest biological antioxidant activity.

OBJECTIVE:

To evaluate the antioxidant effect of vitamin E in this ALF model.

METHODS:

We used 56 rats (mean weight of 300 g) divided into eight groups, four groups assessed at 24 hours and 4 assessed at 48 hours after induction: control group (CO); Vitamin E (Vit. E); Thioacetamide (TAA) and Thioacetamide + Vitamina E (TAA+Vit.E). Rats were submitted to injections of thioacetamide (400 mg/kg i.p.) at baseline and 8 hours later. Vitamin E (100 mg/kg ip) was administered 30 minutes after the second dose of thioacetamide. The 48-hour group rats received two additional doses of vitamin E (24h and 36h). At 24h or 48 hours after the administration of the first dose of TAA, rats were weighed and anesthetized and their blood sampled for evaluation of liver integrity through enzymes aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Liver tissue was sampled for assessment of lipid peroxidation (LPO) by the technique TBARS, antioxidant enzymes SOD, CAT, GPx and GST activity, levels of the NO 2 /NO 3 and histology by H&E in two times. The results were expressed as mean ± standard deviation and statistically analyzed by ANOVA followed by Student-Newman-Keuls, with P <0.05 considered as significant.

CONCLUSION:

These results suggest that vitamin E was able to protect the liver from lesions caused by thioacetamide.

Read More

Genetic variation of carotenoids, vitamin E and phenolic compounds in Provitamin A biofortified maize.

Muzhingi T, Palacios-Rojas N, Miranda A, Cabrera ML, Yeum KJ, Tang G.

J Sci Food Agric. 2017 Feb;97(3):793-801. doi: 10.1002/jsfa.7798. Epub 2016 Jun 7.

Abstract

Biofortified maize is not only a good vehicle for provitamin A carotenoids for vitamin A deficient populations in developing countries but also a source of vitamin E, tocochromanols and phenolic compounds, which have antioxidant properties. Using high-performance liquid chromatography and a total antioxidant performance assay, the present study analyzed the antioxidant variation and antioxidant activity of 36 provitamin A improved maize hybrids and one common yellow maize hybrid. The ranges of major carotenoids in provitamin A carotenoids biofortified maize were zeaxanthin [1.2-13.2 µg g-1 dry weight (DW)], β-cryptoxanthin (1.3-8.8 µg g-1 DW) and β-carotene (1.3-8.0 µg g-1 DW). The ranges of vitamin E compounds identified in provitamin A carotenoids biofortified maize were α-tocopherol (3.4-34.3 µg g-1 DW), γ-tocopherol (5.9-54.4 µg g-1 DW), α-tocotrienol (2.6-19.5 µg g-1 DW) and γ-tocotrienol (45.4 µg g-1 DW). The ranges of phenolic compounds were γ-oryzanol (0.0-0.8 mg g-1 DW), ferulic acid (0.4-3.6 mg g-1 DW) and p-coumaric acid (0.1-0.45 mg g-1 DW). There was significant correlation between α-tocopherol and cis isomers of β-carotene (P < 0.01). Tocotrienols were correlated with α-tocopherol and γ-oryzanol (P < 0.01). Conclusion, genotype was significant in determining the variation in β-cryptoxanthin, β-carotene, α-tocopherol and γ-tocopherol contents (P < 0.01). A genotype × environment interaction was observed for γ-tocopherol content (P < 0.01).

Read More

Nanoencapsulation of coenzyme Q10 and vitamin E acetate protects against UVB radiation-induced skin injury in mice.

Pegoraro NS, Barbieri AV, Camponogara C, Mattiazzi J, Brum ES, Marchiori MC, Oliveira SM, Cruz L.

Colloids Surf B Biointerfaces. 2017 Feb 1;150:32-40. doi: 10.1016/j.colsurfb.2016.11.013. Epub 2016 Nov 9.

Abstract

This study aimed to investigate the feasibility of producing semisolid formulations based on nanocapsule suspensions containing the association of the coenzyme Q10 and vitamin E acetate by adding gellan gum (2%) to the suspensions. Furthermore, we studied their application as an alternative for the treatment of inflammation induced by ultraviolet B (UVB) radiation. For this, an animal model of injury induced by UVB-radiation was employed. All semisolids presented pH close to 5.5, drug content above 95% and mean diameter on the nanometric range, after redispersion in water. Besides, the semisolids presented non-Newtonian flow with pseudoplastic behavior and suitable spreadability factor values. The results also showed that the semisolid containing coenzyme Q10-loaded nanocapsules with higher vitamin E acetate concentration reduced in 73±8% the UVB radiation-induced ear edema. Moreover, all formulations tested were able to reduce inflammation parameters evaluated through MPO activity and histological procedure on injured tissue and the semisolids containing the nanoencapsulated coenzyme Q10 reduced oxidative parameters assessment through the non-protein thiols levels and lipid peroxidation. This way, the semisolids based on nanocapsules may be considered a promising approach for the treatment and prevention of skin inflammation diseases.

Read More

A naturally occurring mixture of tocotrienols inhibits the growth of human prostate tumor, associated with epigenetic modifications of cyclin-dependent kinase inhibitors p21 and p27.

Huang Y, Wu R, Su ZY, Guo Y, Zheng X, Yang CS, Kong AN.

J Nutr Biochem. 2017 Feb;40:155-163. doi: 10.1016/j.jnutbio.2016.10.019. Epub 2016 Nov 4.

Abstract

Tocotrienols, members of the vitamin E family, have three unsaturated bonds in their side chains. Recently, it has been suggested that the biological effects of tocotrienols may differ from that of tocopherols. Several in vitro studies have shown that tocotrienols have stronger anticancer effects than tocopherols. VCaP cell line used in this study is from a vertebral bone metastasis from a patient with prostate cancer. Eight-week-old male NCr(-/-) nude mice were subcutaneously injected with VCaP-luc cells in matrigel and then administered a tocotrienol mixture for 8 weeks. The tocotrienol mixture inhibited the growth of human prostate tumor xenografts in a dose-dependent manner. The concentrations of tocotrienols and their metabolites were significantly increased in treatment groups. Tocotrienols inhibited prostate tumor growth by suppressing cell proliferation, which was associated with the induction of the cyclin-dependent kinase (CDK) inhibitors p21 and p27. In addition, tocotrienol treatment was associated with elevated H3K9 acetylation levels at proximal promoter regions of p21 and p27 and with decreased expression of histone deacetylases. Tocotrienols inhibited human prostate tumor growth, associated with up-regulation of the CDK inhibitors p21 and p27. Elevated expression of p21 and p27 could be partly due to the suppressed expression of HDACs.

Read More