Tocotrienol Treatment in Familial Dysautonomia: Open-Label Pilot Study.

Cheishvili D, Maayan C, Holzer N, Tsenter J, Lax E, Petropoulos S, Razin A.

J Mol Neurosci. 2016 Jul;59(3):382-91. doi: 10.1007/s12031-016-0760-5.

Abstract

Familial dysautonomia (FD) is an autosomal recessive congenital neuropathy, primarily presented in Ashkenazi Jews. The most common mutation in FD patients results from a single base pair substitution of an intronic splice site in the IKBKAP gene which disrupts normal mRNA splicing and leads to tissue-specific reduction of IKBKAP protein (IKAP). To date, treatment of FD patients remains preventative, symptomatic and supportive. Based on previous in vitro evidence that tocotrienols, members of the vitamin E family, upregulate transcription of the IKBKAP gene, we aimed to investigate whether a similar effects was observed in vivo. In the current study, we assessed the effects of tocotrienol treatment on FD patients’ symptoms and IKBKAP expression in white blood cells. The initial daily doses of 50 or 100 mg tocotrienol, doubled after 3 months, was administered to 32 FD patients. Twenty-eight FD patients completed the 6-month study. The first 3 months of tocotrienol treatment was associated with a significant increase in IKBKAP expression level in FD patients’ blood. Despite doubling the dose after the initial 3 months of treatment, IKBKAP expression level returned to baseline by the end of the 6-month treatment. Clinical improvement was noted in the reported clinical questionnaire (with regard to dizziness, bloching, sweating, number of pneumonia, cough episodes, and walking stability), however, no significant effect was observed in any clinical measurements (weight, height, oxygen saturation, blood pressure, tear production, histamine test, vibration threshold test, nerve conduction, and heart rate variability) following Tocotrienol treatment. In conclusion, tocotrienoltreatment appears significantly beneficial by clinical evaluation for some FD patients in a few clinical parameters; however it was not significant by clinical measurements. This open-label study shows the complexity of effect of tocotrienol treatment on FD patients’ clinical outcomes and on IKBKAP expression level compared to in vitro results. A longitudinal study with an increased sample size is required in the future to better understand tocotrienol affect on FD patients.]

Read More

Pharmacokinetics and safety of vitamin E δ-tocotrienol after single and multiple doses in healthy subjects with measurement of vitamin E metabolite

Mahipal A, Klapman J, Vignesh S, Yang CS, Neuger A, Chen DT, Malafa MP.

Cancer Chemother Pharmacol. 2016 Jul;78(1):157-65. doi: 10.1007/s00280-016-3048-0.

Abstract

Vitamin E delta-tocotrienol (VEDT) has demonstrated chemopreventive and antineoplastic activity in preclinical models. The aim of our study was to determine the safety and pharmacokinetics of VEDT and its metabolites after single- and multiple-dose administrations in healthy subjects. Our results suggest that VEDT can be safely consumed by healthy subjects and achieve bioactive levels, supporting the investigation of VEDT for chemoprevention.

Read More

α-Tocopherol Attenuates the Triglyceride- and Cholesterol-Lowering Effects of Rice Bran Tocotrienol in Rats Fed a Western Diet.

Shibata A, Kawakami Y, Kimura T, Miyazawa T, Nakagawa K.

J Agric Food Chem. 2016 Jul 6;64(26):5361-6. doi: 10.1021/acs.jafc.6b02228.

Abstract

Previous studies demonstrated the ability of tocotrienol (T3) to lower levels of lipids, including cholesterol (Cho) and triglycerides (TG). Although α-tocopherol (α-Toc) reportedly inhibits the hypocholesterolemic effect of T3, there is no information about whether α-Toc influences the TG-lowering effect of T3 in vivo. In this study, we investigated the influence of α-Toc on the antihyperlipidemic effects (Cho- and TG-lowering) of rice bran tocotrienols (RBT3) in F344 rats fed a western diet. α-Toc attenuated both the Cho- and TG-lowering effects of RBT3 in vivo, whereas α-Toc alone exhibited no hypolipidemic effects. RBT3-induced Cpt-1a and Cyp7a1 gene expression was reduced by α-Toc. Furthermore, coadministration of α-Toc decreased liver and adipose tissue concentrations of tocotrienols in F344 rats. These results indicate that α-Toc has almost no antihyperlipidemic effect in vivo, but abrogates the antihyperlipidemic effect of RBT3 by reducing tissue concentrations of tocotrienols and regulating expression of genes involved in lipid metabolism. Understanding the underlying mechanism of the beneficial effects of T3 on lipid metabolism and the interaction with α-Toc will be important for developing T3-based therapeutics.

Read More

Delta- and gamma-tocotrienol isomers are potent in inhibiting inflammation and endothelial activation in stimulated human endothelial cells.

Muid S, Froemming GR, Rahman T, Ali AM, Nawawi HM.

Food Nutr Res. 2016 Jul 6;60:31526. doi: 10.3402/fnr.v60.31526.

Abstract

Tocotrienols (TCTs) are more potent antioxidants than α-tocopherol (TOC). However, the effectiveness and mechanism of the action of TCT isomers as anti-atherosclerotic agents in stimulated human endothelial cells under inflammatory conditions are not well established. This study aims to compare the effects of different TCT isomers on inflammation, endothelial activation, and endothelial nitric oxide synthase (eNOS). 2) To identify the two most potent TCT isomers in stimulated human endothelial cells. 3) To investigate the effects of TCT isomers on NFκB activation, and protein and gene expression levels in stimulated human endothelial cells. Results show that δ- and γ-TCT are the two most potent TCT isomers in terms of the inhibition of inflammation and endothelial activation whilst enhancing eNOS, possibly mediated via the NFκB pathway. Hence, there is a great potential for TCT isomers as anti-atherosclerotic agents.

Read More

Synthesis of (2R,8′ S,3′ E)-δ-tocodienol, a tocoflexol family member designed to have a superior pharmacokinetic profile compared to δ-tocotrienol.

Liu X, Gujarathi S, Zhang X, Shao L, Boerma M, Compadre CM, Crooks PA, Hauer-Jensen M, Zhou D, Zheng G.

Tetrahedron. 2016 Jul;72(27-28):4001-4006.

Abstract

A group of side chain partially saturated tocotrienol analogues, namely tocoflexols, have been previously designed in an effort to improve the pharmacokinetic properties of tocotrienols. (2R,8′S,3′E,11′E)-δ-Tocodienol (1) was predicted to be a high value tocoflexol for further pharmacological evaluation. We now report here an efficient 8-step synthetic route to compound 1 utilizing naturally-occurring δ-tocotrienol as a starting material (24% total yield). The key step in the synthesis is oxidative olefin cleavage of δ-tocotrienol to afford the chroman core of 1 with retention of chirality at the C-2 stereocenter.

Read More

Tocopherols in cancer: An update.

Das Gupta S, Suh N.

Mol Nutr Food Res. 2016 Jun;60(6):1354-63. doi: 10.1002/mnfr.201500847. Review.

Abstract

Tocopherols exist in four forms designated as α, β, δ, and γ. Due to their strong antioxidant properties, tocopherols have been suggested to reduce the risk of cancer. Cancer prevention studies with tocopherols have mostly utilized α-tocopherol. Large-scale clinical trials with α-tocopherol provided inconsistent results regarding the cancer-preventive activities of tocopherols. This review summarizes our current understanding of the anticancer activities of different forms of tocopherols based on follow-up of the clinical trials, recent epidemiological evidences, and experimental studies using in vitro and in vivo models. The experimental data provide strong evidence in support of the anticancer activities of δ-tocopherol, γ-tocopherol, and the natural tocopherol mixture rich in γ-tocopherol, γ-TmT, over α-tocopherol. Such outcomes emphasize the need for detailed investigation into the cancer-preventive activities of different forms of tocopherols to provide a strong rationale for intervention studies in the future.

Read More

Metabolomic screening of pre-diagnostic serum samples identifies association between α- and γ-tocopherols and glioblastoma risk.

Björkblom B, Wibom C, Jonsson P, Mörén L, Andersson U, Johannesen TB, Langseth H, Antti H, Melin B.

Oncotarget. 2016 Jun 14;7(24):37043-37053. doi: 10.18632/oncotarget.9242.

Abstract

Glioblastoma is associated with poor prognosis with a median survival of one year. High doses of ionizing radiation is the only established exogenous risk factor. To explore new potential biological risk factors for glioblastoma, we investigated alterations in metabolite concentrations in pre-diagnosed serum samples from glioblastoma patients diagnosed up to 22 years after sample collection, and undiseased controls. The study points out a latent biomarker for future glioblastoma consisting of nine metabolites (γ-tocopherol, α-tocopherol, erythritol, erythronic acid, myo-inositol, cystine, 2-keto-L-gluconic acid, hypoxanthine and xanthine) involved in antioxidant metabolism. We detected significantly higher serum concentrations of α-tocopherol (p=0.0018) and γ-tocopherol(p=0.0009) in future glioblastoma cases. Compared to their matched controls, the cases showed a significant average fold increase of α- and γ-tocopherol levels: 1.2 for α-T (p=0.018) and 1.6 for γ-T (p=0.003). These tocopherol levels were associated with a glioblastoma odds ratio of 1.7 (α-T, 95% CI:1.0-3.0) and 2.1 (γ-T, 95% CI:1.2-3.8). Our exploratory metabolomics study detected elevated serum levels of a panel of molecules with antioxidant properties as well as oxidative stress generated compounds. Additional studies are necessary to confirm the association between the observed serum metabolite pattern and future glioblastoma development.

Read More

Effect of maternal supplementation with vitamin E on the concentration of α-tocopherol in colostrum.

Melo LR, Clemente HA, Bezerra DF, Dantas RC, Ramalho HM, Dimenstein R.

J Pediatr (Rio J). 2016 Jun 18. pii: S0021-7557(16)30059-6. doi: 10.1016/j.jped.2016.03.007. [Epub ahead of print]

Abstract

This study aims to evaluate the effect of maternal supplementation with vitamin E on the concentration of α-tocopherol in colostrum and its supply to the newborn. Study results show that maternal vitamin E supplementation increases the supply of the vitamin to the infant by providing more than twice the Recommended Daily Intake.

Read More

Enhanced effectiveness of tocotrienol-based nano-emulsified system for topical delivery against skin carcinomas.

Pham J, Nayel A, Hoang C, Elbayoumi T.

Drug Deliv. 2016 Jun;23(5):1514-24. doi: 10.3109/10717544.2014.966925.

Abstract

The potent anti-proliferative and pro-apoptotic actions of tocotrienols (T3) against cancer, but not normal tissues, have been hampered by their limited systemic bioavailabilty. Recent expansive development of diverse nanoemulsion (NE) vehicles emphasized their vast potential to improve the effective dosing of different clinical and experimental drugs of lipophilic nature, such as T3. The emphasis of the present work is to develop a pharmaceutically scalable, low-energy nano-emulsification approach for optimized incorporation of T3-rich palm oil (Tocomin®), possessing anticancer activity as a potential cutaneous delivery platform for adjunctive therapy of skin carcinomas, either alone or in combination with other chemotherapeutic agents. Different Tocomin®-NEs, obtained with different homogenization strategies, were screened based on physicochemical uniformity (droplet size, charge and polydispersity) and subjected to stress physical stability testing, along with chemical content analysis (≥90% Tocomin® – incorporation efficiency). Adopted hybrid nano-emulsification of Tocomin®, correlated with highest preservation of DPPH-radical scavenging capacity of active T3 in prototype formulation, Tocomin®-NE, which effectively permeated diffusion cell membranes 4-folds higher than propyleneglycol (PG)-admixed Tocomin® control. Against two different cell models of human cutaneous carcinoma, Tocomin®-hybrid NE demonstrated significantly stronger cytotoxic profiles (p ≤ 0.01), visible in both concentration- and time- dependent manners, with at least 5-folds lower IC50 values, compared to those estimated for the closest Tocomin®-control. The proposed hybrid nano-emulsified formulation of Tocomin® provides simple and stable delivery platform, for effective topical application against keratinocyte tumors.

Read More

Vitamin E therapy beyond cancer: Tocopherol versus tocotrienol.

Peh HY, Tan WS, Liao W, Wong WS.

Pharmacol Ther. 2016 Jun;162:152-69. doi: 10.1016/j.pharmthera.2015.12.003. Review.

Abstract

The discovery of vitamin E (α-tocopherol) began in 1922 as a vital component required in reproduction. Today, there are eight naturally occurring vitamin E isoforms, namely α-, β-, γ- and δ-tocopherol and α-, β-, γ- and δ-tocotrienol. Vitamin E is potent antioxidants, capable of neutralizing free radicals directly by donating hydrogen from its chromanol ring. α-Tocopherol is regarded the dominant form in vitamin E as the α-tocopherol transfer protein in the liver binds mainly α-tocopherol, thus preventing its degradation. That contributed to the oversight of tocotrienols and resulted in less than 3% of all vitamin E publications studying tocotrienols. Nevertheless, tocotrienols have been shown to possess superior antioxidant and anti-inflammatory properties over α-tocopherol. In particular, inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reductase to lower cholesterol, attenuating inflammation via downregulation of transcription factor NF-κB activation, and potent radioprotectant against radiation damage are some properties unique to tocotrienols, not tocopherols. Aside from cancer, vitamin E has also been shown protective in bone, cardiovascular, eye, nephrological and neurological diseases. In light of the different pharmacological properties of tocopherols and tocotrienols, it becomes critical to specify which vitamin E isoform(s) are being studied in any future vitamin E publications. This review provides an update on vitamin E therapeutic potentials, protective effects and modes of action beyond cancer, with comparison of tocopherols against tocotrienols. With the concerted efforts in synthesizing novel vitamin E analogs and clinical pharmacology of vitamin E, it is likely that certain vitamin E isoform(s) will be therapeutic agents against human diseases besides cancer.

Read More