Alpha-tocopherol ameliorates experimental autoimmune encephalomyelitis through the regulation of Th1 cells.

Xue H, Ren H, Zhang L, Sun X, Wang W, Zhang S, Zhao J, Ming L.

Iran J Basic Med Sci. 2016 May;19(5):561-6.

Abstract

Multiple sclerosis (MS) is a serious neurological autoimmune disease, it commonly affects young adults. Vitamin E (Vit E) is an important component of human diet with antioxidant activity, which protects the body’s biological systems. In order to assess the effect of Vit E treatment on this autoimmune disease, we established experimental autoimmune encephalomyelitis (EAE), the animal model of MS, and treated EAE with α-tocopherol (AT) which is the main content of Vit E. Results show that AT was able to attenuate the severity of EAE and delay the disease progression. H&E staining and fast blue staining indicated that AT reduced the inflammation and the demyelination reaction in the spinal cord. Treatment with AT significantly decreased the proliferation of splenocytes. AT also inhibited the production of IFN-γ (Th1 cytokine), though the other cytokines were only affected slightly. According to the results, AT ameliorated EAE, through suppressing the proliferation of T cells and the Th1 response. AT may be used as a potential treatment for MS.

Read More

Elimination of ALDH+ breast tumor initiating cells by docosahexanoic acid and/or gamma tocotrienol through SHP-1 inhibition of Stat3 signaling.

Xiong A, Yu W, Liu Y, Sanders BG, Kline K.

Mol Carcinog. 2016 May;55(5):420-30. doi: 10.1002/mc.22291.

Abstract

Study investigated the ability of docosahexaenoic acid (DHA) alone and in combination with gamma-tocotrienol (γT3) to eliminate aldehyde dehydrogenase positive (ALDH+) cells and to inhibit mammosphere formation, biomarker and functional assay for tumor initiating cells (TICs), respectively, in human triple negative breast cancer cells (TNBCs), and investigated possible mechanisms of action. DHA upregulated Src homology region 2 domain-containing protein tyrosine phosphatase-1 (SHP-1) protein levels and suppressed levels of phosphorylated signal transducer and activator of transcription-3 (pStat3) and its downstream mediators c-Myc, and cyclin D1. siRNA to SHP-1 enhanced the percentage of ALDH+ cells and Stat-3 signaling, as well as inhibited, in part, the ability of DHA to reduce the percentage of ALDH+ cells and Stat-3 signaling. γT3 alone and in combination with DHA reduced ALDH+ TNBCs, up-regulated SHP-1 protein levels, and suppressed Stat-3 signaling. Taken together, data demonstrate the anti-TIC potential of achievable concentrations of DHA alone as well as in combination with γT3.

Read More

Gamma-Tocotrienol Modulates Radiation-Induced MicroRNA Expression in Mouse Spleen.

Ghosh SP, Pathak R, Kumar P, Biswas S, Bhattacharyya S, Kumar VP, Hauer-Jensen M, Biswas R.

Radiat Res. 2016 May;185(5):485-95. doi: 10.1667/RR14248.1.

Abstract

Ionizing radiation causes depletion of hematopoietic cells and enhances the risk of developing secondary hematopoietic malignancies. Vitamin E analog gamma-tocotrienol (GT3), which has anticancer properties, promotes postirradiation hematopoietic cell recovery by enhancing spleen colony-forming capacity, and provides protection against radiation-induced lethality in mice. However, the underlying molecular mechanism involved in GT3-mediated postirradiation survival is not clearly understood. Recent studies have shown that natural dietary products including vitamin E provide a benefit to biological systems by modulating microRNA (miR) expression. In this study, we show that GT3 differentially modulates the miR footprint in the spleen of irradiated mice compared to controls at early times (day 1), as well as later times (day 4 and 15) after total-body irradiation. We observed that miR expression was altered in a dose- and time-dependent manner in GT3-pretreated spleen tissues from total-body irradiated mice. GT3 appeared to affect the expression of a number of radiation-modulated miRs known to be involved in hematopoiesis and lymphogenesis. Moreover, GT3 pretreatment also suppressed the upregulation of radiation-induced p53, suggesting the function of GT3 in the prevention of radiation-induced damage to the spleen. In addition, we have shown that GT3 significantly reduced serum levels of Flt3L, a biomarker of radiation-induced bone marrow aplasia. Further in silico analyses of the effect of GT3 implied the association of p38 MAPK, ERK and insulin signaling pathways. Our study provides initial insight into the mechanism by which GT3 mediates protection of spleen after total-body irradiation.

Read More

Potential of tocotrienols in the prevention and therapy of Alzheimer’s disease.

Xia W, Mo H.

J Nutr Biochem. 2016 May;31:1-9. doi: 10.1016/j.jnutbio.2015.10.011. Review.

Abstract

Currently there is no cure for Alzheimer’s disease (AD); clinical trials are underway to reduce amyloid generation and deposition, a neuropathological hallmark in brains of AD patients. While genetic factors and neuroinflammation contribute significantly to AD pathogenesis, whether increased cholesterol level is a causative factor or a result of AD is equivocal. Prenylation of proteins regulating neuronal functions requires mevalonate-derived farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). The observation that the levels of FPP and GGPP, but not that of cholesterol, are elevated in AD patients is consistent with the finding that statins, competitive inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, reduce FPP and GGPP levels and amyloid β protein production in preclinical studies. Retrospective studies show inverse correlations between incidence of AD and the intake and serum levels of the HMG CoA reductase-suppressive tocotrienols; tocopherols show mixed results. Tocotrienols, but not tocopherols, block the processing and nuclear localization of sterol regulatory element binding protein-2, the transcriptional factor for HMG CoA reductase and FPP synthase, and enhance the degradation of HMG CoA reductase. Consequently, tocotrienols deplete the pool of FPP and GGPP and potentially blunt prenylation-dependent AD pathogenesis. The antiinflammatory activity of tocotrienolsfurther contributes to their protection against AD. The mevalonate- and inflammation-suppressive activities of tocotrienols may represent those of an estimated 23,000 mevalonate-derived plant secondary metabolites called isoprenoids, many of which are neuroprotective. Tocotrienol-containing plant foods and tocotrienol derivatives and formulations with enhanced bioavailability may offer a novel approach in AD prevention and treatment.

 

Read More

Gamma-tocotrienol acts as a BH3 mimetic to induce apoptosis in neuroblastoma SH-SY5Y cells.

Tan JK, Then SM, Mazlan M, Raja Abdul Rahman RN, Jamal R, Wan Ngah WZ.

J Nutr Biochem. 2016 May;31:28-37. doi: 10.1016/j.jnutbio.2015.12.019.

Abstract

Bcl-2 family proteins are crucial regulators of apoptosis. Both pro- and antiapoptotic members exist, and overexpression of the latter facilitates evasion of apoptosis in many cancer types. Bcl-2 homology domain 3 (BH3) mimetics are small molecule inhibitors of antiapoptotic Bcl-2 family members, and these inhibitors are promising anticancer agents. In this study, we report that gamma-tocotrienol (γT3), an isomer of vitamin E, can inhibit Bcl-2 to induce apoptosis. We demonstrate that γT3 induces cell death in human neuroblastoma SH-SY5Y cells by depolarising the mitochondrial membrane potential, enabling release of cytochrome c to the cytosol and increasing the activities of caspases-9 and -3. Treatment of cells with inhibitors of Bax or caspase-9 attenuated the cell death induced by γT3. Simulated docking analysis suggested that γT3 binds at the hydrophobic groove of Bcl-2, while a binding assay showed that γT3 competed with a fluorescent probe to bind at the hydrophobic groove. Our data suggest that γT3 mimics the action of BH3-only protein by binding to the hydrophobic groove of Bcl-2 and inducing apoptosis via the intrinsic pathway in a Bax- and caspase-9-dependent manner.

Read More

γ-Tocotrienol upregulates aryl hydrocarbon receptor expression and enhances the anticancer effect of baicalein.

Yamashita S, Baba K, Makio A, Kumazoe M, Huang Y, Lin IC, Bae J, Murata M, Yamada S, Tachibana H.

Biochem Biophys Res Commun. 2016 May 13;473(4):801-7. doi: 10.1016/j.bbrc.2016.03.111.

Abstract

Previous studies have identified biomolecules that mediate the physiological actions of food factors, such as amino acids, vitamins, fatty acids, minerals, plant polyphenols, and lactobacilli, suggesting that our bodies are equipped with an innate system that senses which food factors are required to maintain our health. However, the effects of environmental factors on food factor sensing (FFS) remains largely unknown. Tocotorienols (T3s), which belongs to the vitamin E family, possess several physiological functions, including cholesterol lowering and neuroprotective effects. Here, we investigated the effects of naturally abundant γ-T3 on FFS-related gene expressions in melanoma using a DNA chip. Our results showed that γ-T3 increased the expression level of aryl hydrocarbon receptor (AhR), a sensing molecule to plant polyphenol baicalein. The co-treatment with γ-T3 and baicalein enhanced the anti-proliferative activity of baicalein, accompanied by the downstream events of AhR-activation induced by baicalein. These data suggest that γ-T3 upregulates AhR expression and enhances its sensitivity to baicalein.]

Read More

γ-Tocotrienol as a Promising Countermeasure for Acute Radiation Syndrome: Current Status.

Singh VK, Hauer-Jensen M.

Int J Mol Sci. 2016 May 3;17(5). pii: E663. doi: 10.3390/ijms17050663. Review.

Abstract

The hazard of ionizing radiation exposure due to nuclear accidents or terrorist attacks is ever increasing. Despite decades of research, still, there is a shortage of non-toxic, safe and effective medical countermeasures for radiological and nuclear emergency. To date, the U.S. Food and Drug Administration (U.S. FDA) has approved only two growth factors, Neupogen (granulocyte colony-stimulating factor (G-CSF), filgrastim) and Neulasta (PEGylated G-CSF, pegfilgrastim) for the treatment of hematopoietic acute radiation syndrome (H-ARS) following the Animal Efficacy Rule. Promising radioprotective efficacy results of γ-tocotrienol (GT3; a member of the vitamin E family) in the mouse model encouraged its further evaluation in the nonhuman primate (NHP) model. These studies demonstrated that GT3 significantly aided the recovery of radiation-induced neutropenia and thrombocytopenia compared to the vehicle controls; these results particularly significant after exposure to 5.8 or 6.5 Gray (Gy) whole body γ-irradiation. The stimulatory effect of GT3 on neutrophils and thrombocytes (platelets) was directly and positively correlated with dose; a 75 mg/kg dose was more effective compared to 37.5 mg/kg. GT3 was also effective against 6.5 Gy whole body γ-irradiation for improving neutrophils and thrombocytes. Moreover, a single administration of GT3 without any supportive care was equivalent, in terms of improving hematopoietic recovery, to multiple doses of Neupogen and two doses of Neulasta with full supportive care (including blood products) in the NHP model. GT3 may serve as an ultimate radioprotector for use in humans, particularly for military personnel and first responders. In brief, GT3 is a promising radiation countermeasure that ought to be further developed for U.S. FDA approval for the ARS indication.

Read More

Action of cholecalciferol and alpha-tocopherol on Staphylococcus aureus efflux pumps.

Tintino SR, Morais-Tintino CD, Campina FF, Pereira RL, Costa Mdo S, Braga MF, Limaverde PW, Andrade JC, Siqueira-Junior JP, Coutinho HD, Balbino VQ, Leal-Balbino TC, Ribeiro-Filho J, Quintans-Júnior LJ.

EXCLI J. 2016 Apr 29;15:315-22. doi: 10.17179/excli2016-277.

Abstract

Alpha-tocopherol is one the most abundant and biologically active isoforms of vitamin E. This compound is a potent antioxidant and one of most studied isoforms of vitamin E. Vitamin D3 (cholecalciferol) is an important nutrient for calcium homeostasis and bone health, that has also been recognized as a potent modulator of the immune response. Methicillin-resistant Staphylococcus aureus (MRSA) is the most important causative agent of both nosocomial and community-acquired infections. The aim of this study was to evaluate the inhibitory effect of alpha-tocopherol and cholecalciferol on both S. aureus and multidrug resistant S. aureus efflux pumps. The RN4220 strain has the plasmid pUL5054 that is the carrier of gene that encodes the macrolide resistance protein (an efflux pump) MsrA; the IS-58 strain possesses the TetK tetracycline efflux protein in its genome and the 1199B strain resists to hydrophilic fluoroquinolones via a NorA-mediated mechanism. The antibacterial activity was evaluated by determining the Minimal Inhibitory Concentration (MIC) and a possible inhibition of efflux pumps was associated to a reduction of the MIC. In this work we observed that in the presence of the treatments there was a decrease in the MIC for the RN4220 and IS-58 strains, suggesting that the substances presented an inhibitory effect on the efflux pumps of these strains. Significant efforts have been done to identify efflux pump inhibitors (EPIs) from natural sources and, therefore, the antibacterial properties of cholecalciferol and alpha-tocopherol might be attributed to a direct effect on the bacterial cell depending on their amphipathic structure.

Read More

Target delivery of small interfering RNAs with vitamin E-coupled nanoparticles for treating hepatitis C.

Duan L, Yan Y, Liu J, Wang B, Li P, Hu Q, Chen W.

Sci Rep. 2016 Apr 26;6:24867. doi: 10.1038/srep24867.

Abstract

RNA interference (RNAi) represents a promising strategy for the treatment of HCV infection. However, the development of an effective system for in vivo delivery of small interfering RNA (siRNA) to target organ remains a formidable challenge. Here, we develop a unique nanoparticle platform (VE-DC) composed of α-tocopherol (vitamin E) and cholesterol-based cationic liposomes (DOTAP-Chol) for systemic delivery of siRNAs to the liver. A HCV-replicable cell line, Huh7.5.1-HCV, and a transient HCV core expressing cell line, Huh7.5.1-Core, were constructed and used to assess the in vitro anti-HCV activity of VE-DC/siRNAs. A transient in vivo HCV model was also constructed by hydrodynamic injection of pCDNA3.1(+)-3FLAG-Core (pCore-3FLAG) plasmid expressing core protein or pGL3-5’UTR-luciferase (pGL3-5’UTR-luc) plasmid expressing luciferase driven by HCV 5’UTR. Nanoscale VE-DC/siRNA was intravenously injected to assess the liver-targeting property as well as antiviral activity. The nanoscale VE-DC effectively exerted an anti-HCV activity in the in vitro cell models. Post-administration of VE-DC/siRNAs also effectively delivered siRNAs to the liver, suppressing core protein production and firefly luciferase activity, without inducing an innate immunity response or off-target and toxicity effects. The VE-DC platform has high potential as a vehicle for delivery of siRNAs to the liver for gene therapy for targeting hepatitis C.

Read More

Recent advances in the determination of tocopherols in biological fluids: from sample pretreatment and liquid chromatography to clinical studies.

Cervinkova B, Krcmova LK, Solichova D, Melichar B, Solich P.

Anal Bioanal Chem. 2016 Apr;408(10):2407-24. doi: 10.1007/s00216-015-9214-0. Review.

Abstract

Vitamin E comprises eight related compounds: α-, β-, γ-, δ-tocopherols and α-, β-, γ-, δ-tocotrienols. In the past, α-tocopherol has been the isomer that was studied most, and its anti-inflammatory and anti-proliferative effects have been described. Therefore, many prevention trials have investigated the effect of α-tocopherol on human health. Current research studies have also defined the important roles of other tocopherols, such as anti-inflammatory, anti-proliferative and cancer preventative effects. Knowledge of the individual tocopherols could help to understand their roles in various metabolic pathways. This review summarizes the recent trends in sample pretreatment, liquid chromatography and selected applications of the determination of tocopherols in various biological materials. The relationship between tocopherol isomers and serious diseases is also described. Graphical Abstract Article structure.

Read More