Antioxidant activities of annatto and palm tocotrienol-rich fractions in fish oil and structured lipid-based infant formula emulsion.

Zou L, Akoh CC

Food Chem. 2015 Feb 1; 168:504-11

Abstract

The abilities of annatto and palm tocotrienol-rich fractions (TRFs), as natural antioxidants, to inhibit lipid oxidation in menhaden fish oil and structured lipid-based infant formula emulsion, were evaluated and compared. The peroxide and anisidine values of the bulk oil and oil-in-water emulsion samples stored at 37°C were measured over a 28-day period. The results showed that annatto TRF was a more effective antioxidant than palm TRF and α-tocopherol in both food systems at 0.02% and 0.05%. Factors, including structural differences in chromanol head and isoprenoid tail, polarity, concentration, oxidation time, and the method used to monitor lipid oxidation, were responsible for the different behaviours of tocopherols and tocotrienols. In contrast to the reported findings in vivo, addition of α-tocopherol (0-75%) did not interfere with the antioxidant activity of tocopherol-free annatto TRF in foods. Our findings may lead to the development of new natural antioxidant products for food applications.

Distribution of Tocopherols and Tocotrienols in Guinea Pig Tissues Following Parenteral Lipid Emulsion Infusion.

Xu Z, Harvey KA, Pavlina TM, Zaloga GP, Siddiqui RA

J Parenter Enteral Nutr. 2014 Aug 28

Abstract:  Tocopherols and tocotrienols possess vitamin E activity and function as the major lipid-soluble antioxidants in the human body. Commercial lipid emulsions are composed of different oils and supply different amounts of vitamin E. The objective of this study was to measure all 8 vitamin E homologs within 4 different commercial lipid emulsions and evaluate their distribution in guinea pig tissues. Materials and Methods: The distribution of vitamin E homologs within plasma and guinea pig tissues was determined using a high-performance liquid chromatography (HPLC) system. Lipid hydroperoxides in lipid emulsions were determined using a commercial kit (Cayman Chemical Company, Ann Arbor, MI), and malondialdehyde tissue levels were determined using an HPLC system. Results: The lipid emulsions contained variable amounts of tocopherols, which were significantly different between emulsions. Tocotrienols were present at very low concentrations (≤0.3%). We found no correlation between the amount of vitamin E present in the lipid emulsions and lipid peroxidation. Hydroperoxides were the lowest with an olive oil-based emulsion and highest with a fish oil emulsion. The predominant vitamin E homolog in guinea pig tissues was α-tocopherol. No tissues had detectable levels of tocotrienols. Vitamin E levels (primarily α-tocopherol and γ-tocopherol) were highly variable among organ tissues. Plasma levels were a poor reflection of most tissue levels. Conclusion: Vitamin E levels within different lipid emulsions and plasma/tissues are highly variable, and no one tissue or plasma sample serves as a good proxy for levels in other tissues. All study emulsions were well tolerated and did not significantly increase systemic lipid peroxidation.

Fat-Soluble Bioactive Components in Colored Rice Varieties.

Minatel IO, Han SI, Aldini G, Colzani M, Matthan NR, Correa CR, Fecchio D, Yeum KJ.

Abstract Bioactive components in rice vary depending on the variety and growing condition. Fat-soluble components such as γ-oryzanol, tocopherols, tocotrienols, carotenoids, and fatty acids were analyzed in brown, sugary brown, red, and black rice varieties using established high-performance liquid chromatography (HPLC) and GC methodologies. In addition, these colored rice varieties were further analyzed using a high-resolution liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) (LTQ-Orbitrap XL) to identify the [M-H]- ions of γ-oryzanol, ranging from m/z 573.3949 to 617.4211. The highest content of tocopherols (α-, 1.5; γ-, 0.5 mg/100 g) and carotenoids (lutein 244; trans-β carotene 25 μg/100 g) were observed in black rice; tocotrienols (α-, 0.07; γ-, 0.14 mg/100 g) in red rice, and γ-oryzanol (115 mg/100 g) in sugary brown rice. In all colored rice varieties, the major fatty acids were palmitic (16:0), oleic (18:1n-9), and linoleic (18:2n-6) acids. When the γ-oryzanol components were further analyzed by LC-MS/MS, 3, 10, 8, and 8 triterpene alcohols or sterol ferulates were identified in brown, sugary brown, red, and black rice varieties, respectively. Such structural identification can lead to the elucidation of biological function of each component at the molecular level. Consumption of colored rice rich in beneficial bioactive compounds may be a useful dietary strategy for achieving optimal health.

Read more

UPLC method for the determination of vitamin E homologues and derivatives in vegetable oils, margarines and supplement capsules using pentafluorophenyl column.

Foo Wong Y, Makahleh A, Saad B, Ibrahim MN, Abdul Rahim A, Brosse N.

A sensitive and rapid reversed-phase ultra performance liquid chromatographic (UPLC) method for the simultaneous determination of tocopherols (α-, β-, γ-, δ-), tocotrienols (α-, β-, γ-, δ-), α-tocopherol acetate and α-tocopherol nicotinate is described. The separation was achieved using a Kinetex pentafluorophenyl (PFP) column (150×2.1mm, 2.6µm) with both photodiode array (PDA) and fluorescence (FL) detectors that were connected in series. Column was thermostated at 42°C. Under a gradient system consisting of methanol and water at a constant flow rate of 0.38mLmin(-1), all the ten analytes were well separated in less than 9.5min. The method was validated in terms of linearity, limits of detection and quantitation, precision and recoveries. Calibration curves of the ten compounds were well correlated (r(2)>0.999) within the range of 100 to 25,000μgL(-1) for α-tocopherol acetate and α-tocopherol nicotinate, 10 to 25,000μgL(-1) for α-tocotrienol and 5 to 25,000μgL(-1) for the other components. The method is simple and sensitive with detection limits (S/N, 3) of 1.0 to 3.0μgL(-1) (FL detection) and 30 to 74μgL(-1) (PDA detection). Relative standard deviations for intra- and inter-day retention times (<1%) and peak areas (≤4%) were obtained. The method was successfully applied to the determination of vitamin E in vegetable oils (extra virgin olive, virgin olive, pomace olive, blended virgin and refined olive, sunflower, soybean, palm olein, carotino, crude palm, walnut, rice bran and grape seed), margarines and supplements.

Read more

Distribution of Tocopherols and Tocotrienols in Guinea Pig Tissues Following Parenteral Lipid Emulsion Infusion.

Xu Z, Harvey KA, Pavlina TM, Zaloga GP, Siddiqui RA.

Background: Tocopherols and tocotrienols possess vitamin E activity and function as the major lipid-soluble antioxidants in the human body. Commercial lipid emulsions are composed of different oils and supply different amounts of vitamin E. The objective of this study was to measure all 8 vitamin E homologs within 4 different commercial lipid emulsions and evaluate their distribution in guinea pig tissues. Materials and Methods: The distribution of vitamin E homologs within plasma and guinea pig tissues was determined using a high-performance liquid chromatography (HPLC) system. Lipid hydroperoxides in lipid emulsions were determined using a commercial kit (Cayman Chemical Company, Ann Arbor, MI), and malondialdehyde tissue levels were determined using an HPLC system. Results: The lipid emulsions contained variable amounts of tocopherols, which were significantly different between emulsions. Tocotrienols were present at very low concentrations (≤0.3%). We found no correlation between the amount of vitamin E present in the lipid emulsions and lipid peroxidation. Hydroperoxides were the lowest with an olive oil-based emulsion and highest with a fish oil emulsion. The predominant vitamin E homolog in guinea pig tissues was α-tocopherol. No tissues had detectable levels of tocotrienols. Vitamin E levels (primarily α-tocopherol and γ-tocopherol) were highly variable among organ tissues. Plasma levels were a poor reflection of most tissue levels. Conclusion: Vitamin E levels within different lipid emulsions and plasma/tissues are highly variable, and no one tissue or plasma sample serves as a good proxy for levels in other tissues. All study emulsions were well tolerated and did not significantly increase systemic lipid peroxidation.

Read more

Antioxidant activities of annatto and palm tocotrienol-rich fractions in fish oil and structured lipid-based infant formula emulsion.

Zou L, Akoh CC.

The abilities of annatto and palm tocotrienol-rich fractions (TRFs), as natural antioxidants, to inhibit lipid oxidation in menhaden fish oil and structured lipid-based infant formula emulsion, were evaluated and compared. The peroxide and anisidine values of the bulk oil and oil-in-water emulsion samples stored at 37°C were measured over a 28-day period. The results showed that annatto TRF was a more effective antioxidant than palm TRF and α-tocopherol in both food systems at 0.02% and 0.05%. Factors, including structural differences in chromanol head and isoprenoid tail, polarity, concentration, oxidation time, and the method used to monitor lipid oxidation, were responsible for the different behaviours of tocopherols and tocotrienols. In contrast to the reported findings in vivo, addition of α-tocopherol (0-75%) did not interfere with the antioxidant activity of tocopherol-free annatto TRF in foods. Our findings may lead to the development of new natural antioxidant products for food applications.

Read more

δ-Tocotrienol Oxazine Derivative Antagonizes Mammary Tumor Cell Compensatory Response to CoCl 2 -Induced Hypoxia.

Ananthula S, Parajuli P, Behery FA, Alayoubi AY, Nazzal S, El Sayed K, Sylvester PW.

In response to low oxygen supply, cancer cells elevate production of HIF-1α, a hypoxia-inducible transcription factor that subsequently acts to stimulate blood vessel formation and promote survival. Studies were conducted to determine the role of δ-tocotrienol and a semisynthetic δ-tocotrienol oxazine derivative, compound 44, on +SA mammary tumor cell hypoxic response. Treatment with 150 µM CoCl2 induced a hypoxic response in +SA mammary tumor cells as evidenced by a large increase in HIF-1α levels, and combined treatment with compound 44 attenuated this response. CoCl2-induced hypoxia was also associated with a large increase in Akt/mTOR signaling, activation of downstream targets p70S6K and eIF-4E1, and a significant increase in VEGF production, and combined treatment with compound 44 blocked this response. Additional in vivo studies showed that intralesional treatment with compound 44 in BALB/c mice bearing +SA mammary tumors significantly decreased the levels of HIF-1α, and this effect was associated with a corresponding decrease in Akt/mTOR signaling and activation of downstream targets p70S6kinase and eIF-4E1. These findings demonstrate that treatment with the δ-tocotrienol oxazine derivative, compound 44, significantly attenuates +SA mammary tumor cell compensatory responses to hypoxia and suggests that this compound may provide benefit in the treatment of rapidly growing solid breast tumors.

Read more

Expression of Senescence-Associated microRNAs and Target Genes in Cellular Aging and Modulation by Tocotrienol-Rich Fraction.

Gwee Sian Khee S, Mohd Yusof YA, Makpol S.

Emerging evidences highlight the implication of microRNAs as a posttranscriptional regulator in aging. Several senescence-associated microRNAs (SA-miRNAs) are found to be differentially expressed during cellular senescence. However, the role of dietary compounds on SA-miRNAs remains elusive. This study aimed to elucidate the modulatory role of tocotrienol-rich fraction (TRF) on SA-miRNAs (miR-20a, miR-24, miR-34a, miR-106a, and miR-449a) and established target genes of miR-34a (CCND1, CDK4, and SIRT1) during replicative senescence of human diploid fibroblasts (HDFs). Primary cultures of HDFs at young and senescent were incubated with TRF at 0.5 mg/mL. Taqman microRNA assay showed significant upregulation of miR-24 and miR-34a and downregulation of miR-20a and miR-449a in senescent HDFs (P < 0.05). TRF reduced miR-34a expression in senescent HDFs and increased miR-20a expression in young HDFs and increased miR-449a expression in both young and senescent HDFs. Our results also demonstrated that ectopic expression of miR-34a reduced the expression of CDK4 significantly (P < 0.05). TRF inhibited miR-34a expression thus relieved its inhibition on CDK4 gene expression. No significant change was observed on the expression of CCND1, SIRT1, and miR-34a upstream transcriptional regulator, TP53. In conclusion tocotrienol-rich fraction prevented cellular senescence of human diploid fibroblasts via modulation of SA-miRNAs and target genes expression.

Read more

Polysaccharopeptide enhanced the anti-cancer effect of gamma-tocotrienol through activation of AMPK.

Liu J, Lau EY, Chen J, Yong J, Tang KD, Lo J, Ng IO, Lee TK, Ling MT.

BACKGROUND:

Prostate cancer (PCa) frequently relapses after hormone ablation therapy. Unfortunately, once progressed to the castration resistant stage, the disease is regarded as incurable as prostate cancer cells are highly resistant to conventional chemotherapy.

METHOD:

We recently reported that the two natural compounds polysaccharopeptide (PSP) and Gamma-tocotrienols (gamma-T3) possessed potent anti-cancer activities through targeting of CSCs. In the present study, using both prostate cancer cell line and xenograft models, we seek to investigate the therapeutic potential of combining gamma-T3 and PSP in the treatment of prostate cancer.Result: We showed that in the presence of PSP, gamma-T3 treatment induce a drastic activation of AMP-activated protein kinase (AMPK). This was accompanied with inactivation of acetyl-CoA carboxylase (ACC), as evidenced by the increased phosphorylation levels at Ser 79. In addition, PSP treatment also sensitized cancer cells toward gamma-T3-induced cytotoxicity. Furthermore, we demonstrated for the first time that combination of PSP and gamma-T3 treaments significantly reduced the growth of prostate tumor in vivo.

CONCLUSION:

Our results indicate that PSP and gamma-T3 treaments may have synergistic anti-cancer effect in vitro and in vivo, which warrants further investigation as a potential combination therapy for the treatment of cancer.

Read more

Therapeutic Efficacy of Vitamin E δ-Tocotrienol in Collagen-Induced Rat Model of Arthritis.

Haleagrahara N, Swaminathan M, Chakravarthi S, Radhakrishnan A.

Rheumatoid arthritis (RA) is a chronic, systemic, inflammatory disease primarily involving inflammation of the joints. Although the management of the disease has advanced significantly in the past three decades, there is still no cure for RA. The aim of this study was to determine the therapeutic efficacy of δ-tocotrienol, in the rat model of collagen-induced arthritis (CIA). Arthritis was induced by intradermal injection of collagen type II emulsified in complete Freund’s adjuvant. CIA rats were orally treated with δ-tocotrienol (10 mg/kg) or glucosamine hydrochloride (300 mg/kg) from day 25 to 50. Efficacy was assessed based on the ability to reduce paw edema, histopathological changes, suppression of collagen-specific T-cells, and a reduction in C-reactive protein (CRP) levels. It was established that δ-tocotrienol had the most significant impact in lowering paw edema when compared to glucosamine treatment. Paw edema changes correlated well with histopathological analysis where there was a significant reversal of changes in groups treated with δ-tocotrienol. The results suggest that δ-tocotrienol is efficient in amelioration of collagen-induced arthritis. Vitamin E delta-tocotrienol may be of therapeutic value against rheumatoid arthritis.

Read more