Tocotrienol-induced caspase-8 activation is unrelated to death receptor apoptotic signaling in neoplastic mammary epithelial cells

Shah S, Sylvester PW.

Exp Biol Med (Maywood). 2004 Sep;229(8):745-55.

Tocotrienols, a subclass in the vitamin E family of compounds, have been shown to induce apoptosis by activating caspase-8 and caspase-3 in neoplastic mammary epithelial cells. Since caspase-8 activation is associated with death receptor apoptotic signaling, studies were conducted to determine the exact death receptor/ligand involved in tocotrienol-induced apoptosis. Highly malignant +SA mouse mammary epithelial cells were grown in culture and maintained in serum-free media. Treatment with 20 microM gamma-tocotrienol decreased+SA cell viability by inducing apoptosis, as determined by positive terminal dUTP nick end labeling (TUNEL) immunocytochemical staining. Western blot analysis showed that gamma-tocotrienol treatment increased the levels of cleaved (active) caspase-8 and caspase-3. Combined treatment with caspase inhibitors completely blocked tocotrienol-induced apoptosis. Additional studies showed that treatment with 100 ng/ml tumor necrosis factor-alpha (TNF-alpha), 100 ng/ml FasL, 100 ng/ml TNF-related apoptosis-inducing ligand (TRAIL), or 1 microg/ml apoptosis-inducing Fas antibody failed to induce death in +SA cells, indicating that this mammary tumor cell line is resistant to death receptor-induced apoptosis. Furthermore, treatment with 20 microM gamma-tocotrienol had no effect on total, membrane, or cytosolic levels of Fas, Fas ligand (FasL), or Fas-associated via death domain (FADD) and did not induce translocation of Fas, FasL, or FADD from the cytosolic to the membrane fraction, providing additional evidence that tocotrienol-induced caspase-8 activation is not associated with death receptor apoptotic signaling. Other studies showed that treatment with 20 microM gamma-tocotrienol induced a large decrease in the relative intracellular levels of phospho-phosphatidylinositol 3-kinase (PI3K)-dependent kinase 1 (phospho-PDK-1 active), phospho-Akt (active), and phospho-glycogen synthase kinase3, as well as decreasing intracellular levels of FLICE-inhibitory protein (FLIP), an antiapoptotic protein that inhibits caspase-8 activation, in these cells. Since stimulation of the PI3K/PDK/Akt mitogenic pathway is associated with increased FLIP expression, enhanced cellular proliferation, and survival, these results indicate that tocotrienol-induced caspase-8 activation and apoptosis in malignant +SA mammary epithelial cells is associated with a suppression in PI3K/PDK-1/Akt mitogenic signaling and subsequent reduction in intracellular FLIP levels.

Read Full Article Here

Studies of the isoprenoid-mediated inhibition of mevalonate synthesis applied to cancer chemotherapy and chemoprevention

Mo H, Elson CE.

Exp Biol Med (Maywood). 2004 Jul;229(7):567-85.

Pools of farnesyl diphosphate and other phosphorylated products of the mevalonate pathway are essential to the post-translational processing and physiological function of small G proteins, nuclear lamins, and growth factor receptors. Inhibitors of enzyme activities providing those pools, namely, 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase and mevalonic acid-pyrophosphate decarboxylase, and of activities requiring substrates from the pools, the prenyl protein transferases, have potential for development as novel chemotherapeutic agents. Their potentials as suggested by the clinical responses recorded in Phase I and II investigations of inhibitors of HMG CoA reductase (the statins), of mevalonic acid-pyrophosphate decarboxylase (sodium phenylacetate and sodium phenylbutyrate), and of farnesyl protein transferase (R115777, SCH66336, BMS-214662, Tipifarnib, L-778,123, and, prematurely, perillyl alcohol) are dimmed by dose-limiting toxicities. These nondiscriminant growth-suppressive agents induce G1 arrest and initiate apoptosis and differentiation, effects attributed to modulation of cell signaling pathways either by modulating gene expression, suppressing the post-translational processing of signaling proteins and growth factor receptors, or altering diacylglycerol signaling. Diverse isoprenoids and the HMG CoA reductase inhibitor, lovastatin, modulate cell growth, induce cell cycle arrest, initiate apoptosis, and suppress cellular signaling activities. Perillyl alcohol, the isoprenoid of greatest clinical interest, initially was considered to inhibit farnesyl protein transferase; follow-up studies revealed that perillyl alcohol suppresses the synthesis of small G proteins and HMG CoA reductase. In sterologenic tissues, sterol feedback control, mediated by sterol regulatory element binding proteins (SREBPs) 1a and 2, exerts the primary regulation on HMG CoA reductase activity at the transcriptional level. Secondary regulation, a nonsterol isoprenoid-mediated fine-tuning of reductase activity, occurs at the levels of reductase translation and degradation. HMG CoA reductase activity in tumors is elevated and resistant to sterol feedback regulation, possibly as a consequence of aberrant SREBP activities. Nonetheless, tumor reductase remains sensitive to isoprenoid-mediated post-transcriptional downregulation. Farnesol, an acyclic sesquiterpene, and farnesyl homologs, gamma-tocotrienol and various farnesyl derivatives, inhibit reductase synthesis and accelerate reductase degradation. Cyclic monoterpenes, d-limonene, menthol and perillyl alcohol and beta-ionone, a carotenoid fragment, lower reductase mass; perillyl alcohol and d-limonene lower reductase mass by modulating translational efficiency. The elevated reductase expression and greater demand for nonsterol products to maintain growth amplify the susceptibility of tumor reductase to isoprenoids, therein rendering tumor cells more responsive than normal cells to isoprenoid-mediated growth suppression. Blends of lovastatin, a potent nondiscriminant inhibitor of HMG CoA reductase, and gamma-tocotrienol, a potent isoprenoid shown to post-transcription-ally attenuate reductase activity with specificity for tumors, synergistically affect the growth of human DU145 and LNCaP prostate carcinoma cells and pending extensive preclinical evaluation, potentially offer a novel chemotherapeutic strategy free of the dose-limiting toxicity associated with high-dose lovastatin and other nondiscriminant mevalonate pathway inhibitors.

Tocotrienol-rich fraction from palm oil affects gene expression in tumors resulting from MCF-7 cell inoculation in athymic mice

Nesaretnam K, Ambra R, Selvaduray KR, Radhakrishnan A, Reimann K, Razak G, Virgili F.

Lipids. 2004 May;39(5):459-67.

It has recently been shown that tocotrienols are the components of vitamin E responsible for inhibiting the growth of human breast cancer cells in vitro, through an estrogen-independent mechanism. Although tocotrienols act on cell proliferation in a dose-dependent manner and can induce programmed cell death, no specific gene regulation has yet been identified. To investigate the molecular basis of the effect of tocotrienols, we injected MCF-7 breast cancer cells into athymic nude mice. Mice were fed orally with 1 mg/d of tocotrienol-rich fraction (TRF) for 20 wk. At end of the 20 wk, there was a significant delay in the onset, incidence, and size of the tumors in nude mice supplemented with TRF compared with the controls. At autopsy, the tumor tissue was excised and analyzed for gene expression by means of a cDNA array technique. Thirty out of 1176 genes were significantly affected. Ten genes were downregulated and 20 genes up-regulated with respect to untreated animals, and some genes in particular were involved in regulating the immune system and its function. The expression of the interferon-inducible transmembrane protein-1 gene was significantly up-regulated in tumors excised from TRF-treated animals compared with control mice. Within the group of genes related to the immune system, we also found that the CD59 glycoprotein precursor gene was up-regulated. Among the functional class of intracellular transducers/effectors/modulators, the c-myc gene was significantly down-regulated in tumors by TRF treatment. Our observations indicate that TRF supplementation significantly and specifically affects MCF-7 cell response after tumor formation in vivo and therefore the host immune function. The observed effect on gene expression is possibly exerted independently from the antioxidant activity typical of this family of molecules.

Induction of apoptosis by tocotrienol in rat hepatoma dRLh-84 cells

Sakai M, Okabe M, Yamasaki M, Tachibana H, Yamada K

Anticancer Res. 2004 May-Jun;24(3a):1683-8.

Our aim was to evaluate the antitumor activities of tocopherol (Toc) and tocotrienol (T3) derivatives. At first, we examined the effect of these vitamin E homologues on the proliferation of rat normal hepatocyte RLN-10 and hepatoma dRLh-84 cells and found that especially T3 inhibited cell proliferation in dRLh-84 cells. Then, we examined the effect of vitamin E homologues on apoptosis induction and found that T3 induced DNA fragmentation and stimulated a rise of caspase-3 activity. In addition, T3 stimulated a rise in caspase-8 activity, while a caspase-8 inhibitor suppressed apoptosis induction by T3. We also examined the incorporation of vitamin E homologues into dRLh-84 cells. T3 was incorporated more quickly compared to Toc. These results indicated that T3 induces apoptosis in dRLh-84 cells and that caspase-8 is involved in this apoptosis induction. The difference in terms of apoptosis induction by vitamin E homologues seems to be related to their different rates of cellular incorporation.

Read Full Article Here

Plasma C-reactive protein concentrations in active and passive smokers: Influence of antioxidant supplementation

Gladys Block, PhD, Christopher Jensen, PhD, Marion Dietrich, PhD, Edward P. Norkus, PhD, Mark Hudes, PhD, and Lester Packer, PhD

J Am Coll Nutr. 2004 Apr;23(2):141-7.

Objective: C-reactive protein (CRP) may directly affect the progression of atherosclerosis, and therefore, may be a target for reducing disease risk. The objective was to determine whether antioxidant supplementation reduces plasma CRP in active and passive smokers.

Design: Randomized, double-blind, placebo-controlled, parallel group trial with 2 months exposure to study supplements.

Setting: Berkeley and Oakland, California.

Subjects: Healthy adult men and women, consuming <4 daily servings of fruits and vegetables, and who were actively or passively exposed to cigarette smoke. Analysis was limited to participants with detectable baseline CRP concentrations and no evidence of inflammation associated with acute illness at baseline or follow-up as reflected in CRP elevations (≥10.0 mg/L). A total of 1393 individuals were screened, 216 randomized, 203 completed the study, and 160 were included in the analysis.

Interventions: Participants were randomized to receive a placebo or vitamin C (515 mg/day) or antioxidant mixture (per day: 515 mg vitamin C, 371 mg α-tocopherol, 171 mg  γ-tocopherol, 252 mg  mixed tocotrienols, and 95 mg α-lipoic acid).

Measures of Outcome: Change in plasma CRP concentration.

Results: Vitamin C supplementation yielded a 24.0% reduction (95% confidence interval, -38.9% to-5.5%, p =0.036 compared to control) in plasma CRP, whereas the antioxidant mixture and placebo produced a nonsignificant 4.7% reduction (-23.9% to 19.3%) and 4.3% increase (-15.1% to 28.2%), respectively. Results were adjusted for baseline body mass index and CRP concentrations.

Conclusions: Plasma CRP itself may serve as a potential target for reducing the risk of atherosclerosis, and antioxidants, including vitamin C, should be investigated further to confirm their CRP-lowering and anti-inflammatory effects.

Tocotrienol-rich fraction of palm oil activates p53, modulates Bax/Bcl2 ratio and induces apoptosis independent of cell cycle association

Agarwal MK, Agarwal ML, Athar M, Gupta S.

Cell Cycle. 2004 Feb;3(2):205-11.

Anti-cancer properties of palm oil have been attributed to the presence of tocotrienols and carotenoids. Studies from various laboratories have shown that tocotrienol-rich fraction (TRF) of palm oil inhibits cell growth and induces apoptosis in both preneoplastic and neoplastic cells. However, the mechanism by which TRF induces apoptosis remains largely unknown. Since several chemopreventive agents have been shown to utilize p53 pathway in negative regulation of cell growth, using human colon carcinoma RKO cells which express wild type p53, we investigated the effect of TRF on components of p53 signaling network. Treatment of cells with TRF resulted in a dose- and time- dependent inhibition of growth and colony formation. Further, TRF treatment of RKO cells resulted in the induction of WAF1/p21 which appears to be independent of cell cycle regulation and is transcriptionally upregulated in p53 dependent fashion. These results were further confirmed by using cells that express luciferase from a p53 responsive promoter where TRF treatment leads to activation of p53 reporter activity. TRF treatment also resulted in alteration in Bax/Bcl2 ratio in favor of apoptosis, which was associated with the release of cytochrome c and induction of apoptotic protease-activating factor-1. This altered expression of Bcl2 family members triggered the activation of initiator caspase-9 followed by activation of effector caspase-3. These signaling cascades lead to condensed chromatin, DNA fragmentation and shrinkage of cell membrane resulting into apoptosis. Our data suggest that TRF-induced apoptosis in colon carcinoma cells is mediated by p53 signaling network which appears to be independent of cell cycle association.

Read Full Article Here

Dietary antioxidant intake and risk of type 2 diabetes

Montonen J, Knekt P, Järvinen R, Reunanen A.

Diabetes Care. 2004 Feb;27(2):362-6.

Objective: The intake of antioxidants was studied for its ability to predict type 2 diabetes.

Research Design & Methods: A cohort of 2,285 men and 2,019 women 40-69 years of age and free of diabetes at baseline (1967-1972) was studied. Food consumption during the previous year was estimated using a dietary history interview. The intake of vitamin C, four tocopherols, four tocotrienols, and six carotenoids was calculated. During a 23-year follow-up, a total of 164 male and 219 female incident cases occurred.

Results: Vitamin E intake was significantly associated with a reduced risk of type 2 diabetes. The relative risk (RR) of type 2 diabetes between the extreme quartiles of the intake was 0.69 (95% CI 0.51-0.94, P for trend = 0.003). Intakes of alpha-tocopherol, gamma-tocopherol, delta-tocopherol, and beta-tocotrienol were inversely related to a risk of type 2 diabetes. Among single carotenoids, beta-cryptoxanthin intake was significantly associated with a reduced risk of type 2 diabetes (RR 0.58, 95% CI 0.44-0.78, P < 0.001). No association was evident between intake of vitamin C and type 2 diabetes risk.

Conclusion: This study supports the hypothesis that development of type 2 diabetes may be reduced by the intake of antioxidants in the diet.

Disruption of mitochondria during tocotrienol-induced apoptosis in MDA-MB-231 human breast cancer cells

Takahashi K, Loo G.

Biochem Pharmacol. 2004 Jan 15;67(2):315-24.

Tocotrienols, which are Vitamin E isoforms, are known to inhibit the growth of human breast cancer cells due partly to apoptosis. However, the characterization of tocotrienol-induced apoptosis is incomplete, particularly what happens during the initiation phase that precedes execution of the cells. The objective of this study was to clarify the apoptotic effects of tocotrienols, with especial emphasis in determining if the mitochondria-mediated death pathway is activated when human breast cancer cells are incubated with a specific tocotrienol isomer. During incubation with gamma-tocotrienol, MDA-MB-231 human breast cancer cells showed membrane blebbing, and apoptotic bodies were present. Upon 4′,6-diamidino-2-phenylindole staining of the cells, chromatin condensation and fragmentation were observed. Additionally, the annexin V-binding assay detected the translocation of membrane phospholipid during earlier analysis of the cells. Taken together, these results further establish that gamma-tocotrienol can induce apoptosis in human breast cancer cells. To help elucidate how gamma-tocotrienol induced the apoptosis, some important parameters related to the mitochondria-mediated death pathway were examined next. In gamma-tocotrienol-treated cells, the mitochondria were disrupted. Collapse of the mitochondrial membrane potential was detected, and cytochrome c was released later from mitochondria. However, expression of Bax and Bcl-2 (mRNA and protein) did not change. Furthermore, poly-(ADP-ribose)-polymerase cleavage was not detected, suggesting that caspases were not involved in the gamma-tocotrienol-induced apoptosis. These results imply that cytochrome c is not the critical protein released from mitochondria that triggers gamma-tocotrienol-induced apoptosis in MDA-MB-231 cells.

Anti-angiogenic potential of tocotrienol in vitro

Miyazawa T, Inokuchi H, Hirokane H, Tsuzuki T, Nakagawa K, Igarashi M.

Biochemistry (Mosc). 2004 Jan;69(1):67-9.

Modulation of angiogenesis is now a recognized strategy for the prevention of various angiogenesis-mediated disorders. We investigated, using well-characterized in vitro systems, the anti-angiogenic property of vitamin E compounds, with particular emphasis on tocotrienol, a natural analog of tocopherol. Tocotrienol, but not tocopherol, inhibited the proliferation of bovine aortic endothelial cells in dose dependent manner at half-maximal concentrations in the low micromolar range. Tocotrienol also significantly inhibited the formation of networks of elongated endothelial cells within 3D collagen gels. From these results, we suggest that tocotrienol is a potential candidate for the development of useful therapeutic agents or preventive food factors for tumor angiogenesis.

Read Full Article Here

Suppression of 7,12-dimethylbenz[alpha]anthracene-induced carcinogenesis and hypercholesterolaemia in rats by tocotrienol-rich fraction isolated from rice bran oil

Iqbal J, Minhajuddin M, Beg ZH.

Eur J Cancer Prev. 2003 Dec;12(6):447-53.

The anti-tumour and anti-cholesterol impacts of tocotrienol-rich fraction (TRF) were investigated in rats treated with the chemical carcinogen 7,12-dimethylbenz [alpha]anthracene (DMBA), which is known to induce mammary carcinogenesis and hypercholesterolaemia. DMBA administration to rats was associated with the appearance of multiple tumours on mammary glands after 6 months. Alkaline phosphatase (ALP) and glutathione-S-transferase (GST) are used as marker enzymes to monitor the severity of carcinogenesis. Although no tumours were visible on livers, hepatic ALP and GST activities of DMBA-treated rats were profoundly elevated in comparison to enzyme activities of normal control rats. Feeding of TRF (10 mg/kg body weight/day) for 6 months, isolated from rice bran oil (RBO), to DMBA-administered rats, reduced the severity and extent of neoplastic transformation in the mammary glands. Similarly, plasma and mammary ALP activities increased during carcinogenesis (95% and 43%, respectively), were significantly decreased in TRF-treated rats, whereas TRF mediated a further increase of 51% in hepatic ALP activity. TRF treatment to rats maintained low levels of GST activities in liver ( approximately 32%) and mammary glands ( approximately 21%), which is consistent with anti-carcinogenic properties of TRF. Administration of DMBA also caused a significant increase of 30% in plasma total cholesterol and 111% in LDL-cholesterol levels compared with normal control levels. Feeding of TRF to rats caused a significant decline of 30% in total cholesterol and 67% in LDL-cholesterol levels compared with the DMBA-administered rats. The experimental hypercholesterolaemia caused a significant increase in enzymatic activity (23%) and protein mass (28%) of hepatic 3-hydroxy-3-methylglutaryl co-enzyme A (HMG-CoA) reductase. Consistent with TRF-mediated reduction in plasma lipid levels, enzymatic activity and protein mass of HMG-CoA reductase was significantly reduced. These results indicate that TRF has potent anti-cancer and anti-cholesterol effects in rats.