Vitamin E sensitive genes in the developing rat fetal brain: A high-density oligonucleotide microarray analysis

Roy S, Lado BH, Khanna S, Sen CK.

FEBS Lett. 2002 Oct 23;530(1-3):17-23.

Vitamin E (tocopherols and tocotrienols) is essential for normal neurological function. Recently we have reported that the neuroprotective properties oftocotrienols are much more potent than that of the widely studied tocopherols (Sen, C.K., Khanna, S., Roy, S. and Parker, L. (2000) J. Biol. Chem. 275, 13049-13055). The objective of this study was to evaluate whether (i) oral supplementation of tocotrienols during pregnancy is bioavailable to fetal and mother brains; (ii) short-term change in dietary vitamin E levels of pregnant rats influences gene expression profile of developing fetal brains. We report that dietary tocotrienol is bioavailable to both mother and fetal brains. The enrichment is more in fetal brain tissue. Using a GeneChip microarray expression profiling approach we have identified a specific set of vitamin E sensitive genes in the developing rat fetal brain.

Identities and differences in the metabolism of tocotrienols and tocopherols in HepG2 cells

Birringer M, Pfluger P, Kluth D, Landes N, Brigelius-Flohé R.

J Nutr. 2002 Oct;132(10):3113-8.

The metabolism of alpha- and gamma-tocotrienol was investigated in HepG2 cells. Metabolites were identified by HPLC and gas chromatography/mass spectrometry. gamma-Tocotrienol was degraded to gamma-CEHC (carboxyethyl hydroxychroman), gamma-CMBHC (carboxymethylbutyl hydroxychroman), gamma-CMHenHC (carboxymethylhexenyl hydroxychroman), gamma-CDMOenHC (carboxydimethyloctenyl hydroxychroman) and gamma-CDMD(en)(2)HC (carboxydimethyldecadienyl hydroxychroman). alpha-Tocotrienol yielded alpha-CEHC, alpha-CMBHC, alpha-CMHenHC and alpha-CDMOenHC, whereas alpha-CDMD(en)(2)HC could not be detected. These findings demonstrate that the trienols are metabolized essentially like tocopherols, i.e., by omega-oxidation followed by beta-oxidation of the side chain. The failure to detect CMBHC with the original double bond in the side chain reveals that auxiliary enzymes are involved, as in the metabolism of unsaturated fatty acids. CMBHC were the most abundant metabolites obtained from the tocotrienols as well as from alpha-tocopherol. Quantitatively, the tocotrienols were degraded to a larger extent than their counterparts with saturated side chains. The pronounced quantitative differences in the metabolism between individual tocopherols as well as between tocotrienols and tocopherols in vitro suggest a corresponding lack of equivalence in vivo.

Effects on the human serum lipoprotein profile of beta-glucan, soy protein and isoflavones, plant sterols and stanols, garlic and tocotrienols

Kerckhoffs DA, Brouns F, Hornstra G, Mensink RP.

J Nutr. 2002 Sep;132(9):2494-505

The effects of beta-glucan, soy protein, isoflavones, plant sterols and stanols, garlic and tocotrienols on serum lipoproteins have been of great interest the last decade. From a critical review of the literature, it appeared that recent studies found positive as well as no effects of beta-glucan from oats on serum LDL cholesterol concentrations. These conflicting results may suggest that the cholesterol-lowering activity of products rich in oat beta-glucan depends on factors, such as its viscosity in the gastrointestinal tract, the food matrix and/or food processing. The effects of beta-glucan from barley or yeast on the lipoprotein profile are promising, but more human trials are needed to further substantiate these effects. It is still not clear whether the claimed hypocholesterolemic effects of soy can be attributed solely to the isoflavones. Several studies found no changes in serum LDL cholesterol concentrations after consumption of isolated soy isoflavones (without soy protein), indicating that a combination of soy protein and isoflavones may be needed for eliciting a cholesterol-lowering effect of soy. Therefore, the exact (combination of) active ingredients in soy products need to be identified. The daily consumption of 2-3 g of plant sterols or stanols reduces LDL cholesterol concentrations by 9-14%. It has been demonstrated that functional foods enriched with plant sterols and stanols are effective in various population groups, and in combination with cholesterol-lowering diets or drugs. Whether garlic or garlic preparations can be used as a lipid-lowering agent is still uncertain. It is important to characterize the active components in garlic and their bioavailability after ingestion. It is not very likely that tocotrienols from palm oil or rice bran oil have favorable effects on the human serum lipoprotein profile.

Dose-dependent cholesterolemic activity of tocotrienols

Khor H Dr, Ng T, Rajendran R.

Malays J Nutr. 2002 Sep;8(2):157-166.

Tocotrienols and tocopherols are isoforms of vitamin E. Vitamin E may exhibit antioxidant, prooxidant and non-antioxidant activities depending upon circumstances. In this study, the effect of tocotrienols and a-tocopherol on the activities of HMG CoA reductase and cholesterol 7 a-hydroxylase was investigated. Pure tocotrienols were isolated from palm fatty acid distillate and pure a-tocopherol was obtained commercially. Guinea pigs were treated with different dosages of tocotrienols and a-tocopherol. After the treatment period, animals were sacrificed and liver microsomes were prepared. HMG CoA reductase and cholesterol 7a-hydroxylase were assayed using tracer techniques. Our results showed that the effects of tocotrienols and a-tocopherol on the activities of both the enzymes were dose-dependent. At low dosages, both tocotrienols and a-tocopherol exhibited an inhibitory effect on both the enzymes. Moreover, tocotrienols were a much stronger inhibitors than a-tocopherol. At high dosages, on the other hand, tocotrienols and a-tocopherol showed opposite effects on the enzymes. While tocotrienols continued to exhibit an inhibitory effect, a-tocopherol actually exhibited a stimulatory effect on both the enzymes. A possible explanation for this observation is suggested.

Development and validation of oxygen radical absorbance capacity assay for lipophilic antioxidants using randomly methylated beta-cyclodextrin as the solubility enhancer

Huang D, Ou B, Hampsch-Woodill M, Flanagan JA, Deemer EK.

J Agric Food Chem. 2002 Mar 27;50(7):1815-21.

We recently reported the improved oxygen radical absorbance capacity (ORAC) assay using fluorescein (FL) as the fluorescent probe. The current ORAC(FL) assay is limited in hydrophilic antioxidant due to the aqueous environment of the assay. Lipophilic antioxidants mainly include the vitamin E family and carotenoids, which play a critical role in biological defense systems. In this paper, we expanded the current ORAC(FL) assay to lipophilic antioxidants. Randomly methylated beta-cyclodextrin (RMCD) was introduced as the water solubility enhancer for lipophilic antioxidants. Seven percent RMCD (w/v) in a 50% acetone-H(2)O mixture was found to sufficiently solubilize vitamin E compounds and other lipophilic phenolic antioxidants in 75 mM phosphate buffer (pH 7.4). This newly developed ORAC assay (abbbreviated ORAC(FL-LIPO)) was validated through linearity, precision, accuracy, and ruggedness. The validation results demonstrate that the ORAC(FL-LIPO) assay is reliable and robust. For the first time, by using 6-hydroxy-2,5,7,8-tetramethyl-2-carboxylic acid as a standard (1.0), the ORAC values of alpha-tocopherol, (+)-gamma-tocopherol, (+)-delta-tocopherol, alpha-tocopherol acetate, tocotrienols, 2,6-di-tert-butyl-4-methylphenol, and gamma-oryzanol were determined to be 0.5 +/- 0.02, 0.74 +/- 0.03, 1.36 +/- 0.14, 0.00, 0.91 +/- 0.04, 0.16 +/- 0.01, and 3.00 +/- 0.26, respectively. The structural information of oxidized alpha-tocopherol obtained by liquid chromatography/mass spectrometry reveals that the mechanism for the reaction between the vitamin E and the peroxyl radical follows the hydrogen atom transfer mechanism, which is in agreement with the notion that vitamin E is the chain-breaking antioxidant.

Antioxidants in dietary oils: Their potential role in breast cancer prevention

Sylvester PW Dr, Shah S.

Malays J Nutr. 2002 Mar;8(1):1-11.

Edible oils contain variable amounts of natural antioxidants such as vitamin E. Antioxidants act not only to prevent lipid peroxidation and free-radical production, but also display potent anticancer activity. The vitamin E family of compounds is divided into two subgroups called tocopherols and tocotrienols, but only tocotrienols display potent anticancer activity at treatment doses that have little or no effect on normal cell growth or viability. Palm oil contains the highest concentrations of natural tocotrienols. Tocotrienols induced apoptosis or programmed cell death in breast cancer cells. Morphological and biochemical characteristics of apoptosis, such as nuclear and cytoplasmic condensation and DNA fragmentation, are mediated by the activation of cysteine proteases called caspases. Apoptosis is triggered by the activation of initiator caspases (caspase-8 or 9) that subsequently activate effector caspases (caspase-3, 6, and 7). Studies were conducted using the highly malignant +SA mouse mammary epithelial cell line to determine if tocotrienol-induced programmed cell death is mediated through the caspase-8 or caspase-9 pathway. Treatment with cytotoxic doses of tocotrienol resulted in a large increase in caspase-8 and caspase-3, but not caspase-9 activity. Combined treatment of tocotrienol with selective caspase-8 or caspase-3 inhibitors completely blocked tocotrieno-linduced apoptosis and activation of caspase-8 and caspase-3, respectively. These findings demonstrate that tocotrienol-induced apoptosis in highly malignant mammary epithelial cells is mediated through caspase-8 activation, and may provide essential information necessary for understanding the potential health benefits of these compounds in preventing and/or reducing the risk of breast cancer in women.

Does lack of tocopherols and tocotrienols put women at increased risk of breast cancer?

Schwenke DC.

J Nutr Biochem. 2002 Jan;13(1):2-20.

Breast cancer is the leading site of new cancers in women and the second leading cause (after lung cancer) of cancer mortality in women. Observational studies that have collected data for dietary exposure to alpha-tocopherol with or without the other related tocopherols and tocotrienolshave suggested that vitamin E from dietary sources may provide women with modest protection from breast cancer. However, there is no evidence that vitamin E supplements confer any protection whatever against breast cancer. Observational studies that have assessed exposure to vitamin E by plasma or adipose tissue concentrations of alpha-tocopherol have failed to provide consistent support for the idea that alpha-tocopherol provides any protection against breast cancer. In addition, evidence from studies in experimental animals suggest that alpha-tocopherol supplementation alone has little effect on mammary tumors. In contrast, studies in breast cancer cells indicate that alpha- gamma-, and delta-tocotrienol, and to a lesser extent delta-tocopherol, have potent antiproliferative and proapoptotic effects that would be expected to reduce risk of breast cancer. Many vegetable sources of alpha-tocopherol also contain other tocopherols or tocotrienols. Thus, it seems plausible that the modest protection from breast cancer associated with dietary vitamin E may be due to the effects of the other tocopherols and the tocotrienols in the diet. Additional studies will be required to determine whether this may be the case, and to identify the most active tocopherol/tocotrienol.

Vitamin E inhibition of normal mammary epithelial cell growth is associated with a reduction in protein kinase C (alpha) activation

Sylvester PW, McIntyre BS, Gapor A, Briski KP.

Cell Prolif. 2001 Dec;34(6):347-57.

Tocopherols and tocotrienols represent the two subclasses within the vitamin E family of compounds. However, tocotrienols are significantly more potent than tocopherols in suppressing epidermal growth factor (EGF)-dependent normal mammary epithelial cell growth. EGF is a potent mitogen for normal mammary epithelial cells and an initial event in EGF-receptor mitogenic-signalling is protein kinase C (PKC) activation. Studies were conducted to determine if the antiproliferative effects of specific tocopherol and tocotrienol isoforms are associated with a reduction in EGF-receptor mitogenic signalling and/or PKC activation. Normal mammary epithelial cells isolated from midpregnant BALB/c mice were grown in primary culture, and maintained on serum-free media containing 10 ng/mL EGF as a mitogen, and treated with various doses (0-250 microm) of alpha-, gamma-, or delta-tocopherol or alpha-, gamma-, or delta-tocotrienol. Treatment with growth inhibitory doses of delta-tocopherol (100 microm), alpha-tocotrienol (50 microm), or gamma- or delta-tocotrienol (10 microm) did not affect EGF-receptor levels, EGF-induced EGF-receptor tyrosine kinase activity, or total intracellular levels of PKC(alpha). However, these treatments were found to inhibit EGF-induced PKC(alpha) activation as determined by its translocation from the cytosolic to membrane fraction. Treatment with 250 microm alpha- or gamma-tocopherol had no affect on EGF-receptor mitogenic signalling or cell growth. These findings demonstrate that the inhibitory effects of specific tocopherol and tocotrienol isoforms on EGF-dependent normal mammary epithelial cell mitogenesis occurs downstream from the EGF-receptor and appears to be mediated, at least in part, by a reduction in PKC(alpha) activation.

Rice bran oil and gamma-oryzanol in the treatment of hyperlipoproteinaemias and other conditions

Cicero AF, Gaddi A.

Phytother Res. 2001 Jun;15(4):277-89.

Diet is the first (and sometimes the only) therapeutic approach to hyperlipoproteinaemias. Rice bran oil and its main components (unsaturated fatty acids, triterpene alcohols, phytosterols, tocotrienols, alpha-tocopherol) have demonstrated an ability to improve the plasma lipid pattern of rodents, rabbits, non-human primates and humans, reducing total plasma cholesterol and triglyceride concentration and increasing the high density lipoprotein cholesterol level. Other potential properties of rice bran oil and gamma-oryzanol, studied both in vitro and in animal models, include modulation of pituitary secretion, inhibition of gastric acid secretion, antioxidant action and inhibition of platelet aggregation. This paper reviews the available data on the pharmacology and toxicology of rice bran oil and its main components with particular attention to those studies relating to plasma lipid altering effects.

Synergistic effect of tocotrienol-rich fraction (TRF(25)) of rice bran and lovastatin on lipid parameters in hypercholesterolemic humans

Qureshi AA, Sami SA, Salser WA, Khan FA

J Nutr Biochem. 2001 Jun;12(6):318-329.

Tocotrienols exert hypocholesterolemic action in humans and animals. Lovastatin is widely used for that purpose. Both agents work by suppressing the activity of beta-hydroxy-beta-methylglutaryl coenzyme A reductase through different mechanisms, post-transcriptional vs competitive inhibition. A human study with 28 hypercholesterolemic subjects was carried out in 5 phases of 35 days each, to check the efficacy of tocotrienol-rich fraction (TRF(25)) of rice bran alone and in combination with lovastatin. After placing subjects on the American Heart Association (AHA) Step-1 diet (phase II), the subjects were divided into two groups, A and B. The AHA Step-1 diet was continued in combination with other treatments during phases III to V. Group A subjects were given 10 mg lovastatin, 10 mg lovastatin plus 50 mg TRF(25), 10 mg lovastatin plus 50 mg alpha-tocopherol per day, in the third, fourth, and fifth phases, respectively. Group B subjects were treated exactly to the same protocol except that in the third phase, they were given 50 mg TRF(25) instead of lovastatin.The TRF(25) or lovastatin plus AHA Step-1 diet effectively lower serum total cholesterol (14%, 13%) and LDL-cholesterol (18%, 15% P < 0.001), respectively, in hypercholesterolemic subjects. The combination of TRF(25) and lovastatin plus AHA Step-1 diet significantly reduces of these lipid parameters of 20% and 25% (P < 0.001) in these subjects. Substitution of TRF(25) with alpha-tocopherol produces insignificant changes when given with lovastatin. Especially significant is the increase in the HDL/LDL ratio to 46% in group (A) and 53% (P < 0.002) in group (B). These results are consistent with the synergistic effect of these two agents. None of the subjects reported any side-effects throughout the study of 25-weeks. In the present study, the increased effectiveness of low doses of tocotrienols (TRF(25)) as hypocholesterolemic agents might be due to a minimum conversion to alpha-tocopherol. The report also describes in vivo the conversion of gamma-[4-3H]-, and [14C]-desmethyl (d-P(21)-T3) tocotrienols to alpha-tocopherol.