Vitamin E and Alzheimer’s disease: what do we know so far?

Browne D, McGuinness B, Woodside JV, McKay GJ

Clin Interv Aging. 2019 Jul 18;14:1303-1317. doi: 10.2147/CIA.S186760. eCollection 2019.

Abstract

Vitamin E has been proposed as a potential clinical intervention for Alzheimer’s disease (AD) given the plausibility of its various biological functions in influencing the neurodegenerative processes associated with the condition. The tocopherol and tocotrienol isoforms of vitamin Ehave multiple properties including potent antioxidant and anti-inflammatory characteristics, in addition to influences on immune function, cellular signalling and lowering cholesterol. Several of these roles offer a theoretical rationale for providing benefit for the treatment of AD-associated pathology. Diminished circulating concentrations of vitamin E have been demonstrated in individuals with AD. Reduced plasma levels have furthermore been associated with an increased risk of AD development while intake, particularly from dietary sources, may limit or reduce the rate of disease progression. This benefit may be linked to synergistic actions between vitamin E isoforms and other micronutrients. Nevertheless, randomised trials have found limited and inconsistent evidence of vitamin E supplementation as an effective clinical intervention. Thus, despite a strong rationale in support of a beneficial role for vitamin E for the treatment of AD, the evidence remains inconclusive. Several factors may partly explain this discrepancy and represent the difficulties of translating complex laboratory evidence and dietary interactions into clinical interventions. Methodological design limitations of existing randomised trials and restrictions to supplementation with a single vitamin E isoform may also limit the influence of effect. Moreover, several factors influence individual responsiveness to vitamin E intake and recent findings suggest variation in the underlying genetic architecture attenuates vitamin E biological availability and activity which likely contributes to the variation in clinical responsiveness and the failure of randomised trials to date. Importantly, the clinical safety of vitamin E remains controversial and warrants further investigation.

Read More

Antioxidant vitamin supplementation prevents oxidative stress but does not enhance performance in young football athletes

de Oliveira DCX, Rosa FT, Simões-Ambrósio L, Jordao AA, Deminice R

Nutrition. 2019 Jul - Aug;63-64:29-35. doi: 10.1016/j.nut.2019.01.007. Epub 2019 Jan 24.

Abstract

OBJECTIVES:

The aim of this study was to verify the effects of supplementation with antioxidants (vitamins C and E) on oxidative stress, delayed-onset muscle soreness (DOMS), and performance in football players during a recovery period after an exercise-induced oxidative stress protocol.

METHODS:

Twenty-one football athletes were randomly assigned to two groups: placebo and antioxidant-supplemented. Supplementation was performed in a double-blind, controlled manner using vitamin C (500 mg/d) and E (400 UI/d) for 15 d. After 7 d of supplementation, athletes were submitted to an exercise-induced oxidative stress protocol consisting of plyometric jumping and strength resistance sets to exhaustion. Blood samples, performance tests, and DOMS were determined before and 24, 48, and 72 h after exercise.

RESULTS:

Antioxidant supplementation was continued during the recuperation week and for a total of 15 d. Antioxidant supplementation caused a significant increase in plasma vitamins C and E. The antioxidant supplementation could inhibit oxidative stress characterized by elevated lipid peroxidation markers malondialdehyde and total lipid peroxidation as well as reduced ratio of glutathione to oxidized glutathione promoted by exercise. Antioxidant supplementation, however, did not significantly reduce the plasma creatine kinesis concentration or DOMS during the recovery days. Likewise, supplementation with vitamin C and E did not improve lower body power, agility, or anaerobic power, nor did it provide any indication of faster muscle recovery.

CONCLUSION:

Antioxidant supplementation does not attenuate elevated markers of muscle damage or muscle soreness promoted by acute exercise and do not exert any ergogenic effect on football performance of young athletes, although it reduced oxidative stress.

Read More

Effect of atherosclerosis and the protective effect of the antioxidant vitamin E on the rabbit cerebellum

Elbeltagy MAF, Elkholy WB, Salman AS

Microscopy (Oxf). 2019 Jul 15. pii: dfz023. doi: 10.1093/jmicro/dfz023. [Epub ahead of print]

Abstract

BACKGROUND:

Atherosclerosis is a major cardiovascular disease and one of the commonest causes of mortality in the world. Speech, balance, fine motor control and cognition are affected by atherosclerosis of cerebellar arteries. This study investigated the protective role of vitamin E against induced atherosclerosis in the rabbit cerebellum.

Read More

Development of α-tocopherol surface-modified targeted delivery of 5-fluorouracil-loaded poly-D, L-lactic-co-glycolic acid nanoparticles against oral squamous cell carcinoma

Srivastava S, Gupta S, Mohammad S, Ahmad I

J Cancer Res Ther. 2019 Jul-Sep;15(3):480-490. doi: 10.4103/jcrt.JCRT_263_18.

Abstract

OBJECTIVE:

The aim of the study to develop surface modified targeted moiety α-tocopherol (α-t) encapsulated with 5-fluorouracil (5-FU)-poly-D, L-lactic-co-glycolic acid nanoparticles (PLGA NPs) toward the anticancer activity against oral squamous cell carcinoma (OSCC).

MATERIALS AND METHODS:

5-FU was conjugated with the polymer, PLGA by ionic cross-linking and α-tocopherol use as a functionalized surface moiety. Characterization, drug entrapment efficiency, and in-vitro drug release system were optimized at different pH 7.4 and pH 4.5. The in-vitro cell was performed to optimize the anticancer activity through MTT assay and apoptotic staining assay was also performed by flow cytometry to evaluate the cellular apoptotic activity and cellular uptake.

RESULTS:

The particle size was distributed within an average range of 145-162 nm, the polydispersity index values lie 0.16-0.30, and the surface charge was at the negative side, -17mV to -23mV. The in vitro drug release system showed more sympathetic situation at pH 7.4 as compared to pH 4.5, for targeted NPs, approximately 86% and 69%, respectively. The non-targeted 5-FU-PLGA NPs showed drug release of 83% and 64% at pH 7.4 and 4.5 subsequently. In vitro anticancer activity confirmed the intense inhibition by α-t-FU-PLGA NPs of 79.98% after 96 h treatment of SCC15 cells and confirmed the steady-state inhibition of 83.74% after 160 h incubation in comparison to 5-FU-PLGA NPs. Subsequently, the early apoptosis, 27.98%, and 16.45%, and late apoptosis, 47.29%, and 32.57%, suggested the higher apoptosis rate in targeted NPs against OSCC.

CONCLUSIONS:

The surface modified α-t-FU-PLGA NP was treated over SCC15 cells, and the oral cancer cells have shown the high intensity of cellular uptake, which confirmed that the target moiety has successfully invaded over the surface of cancer cells and shown advanced targeted delivery against OSCC.

Read More

Tocotrienols and Cancer: From the State of the Art to Promising Novel Patents

Fontana F, Raimondi M, Marzagalli M, Moretti RM, Marelli MM, Limonta P

Recent Pat Anticancer Drug Discov. 2019;14(1):5-18. doi: 10.2174/1574892814666190116111827.

Abstract

BACKGROUND:

Tocotrienols (TTs) are vitamin E derivatives naturally occurring in several plants and vegetable oils. Like Tocopherols (TPs), they comprise four isoforms, α, β, γ and δ, but unlike TPs, they present an unsaturated isoprenoid chain. Recent studies indicate that TTs provide important health benefits, including neuroprotective, anti-inflammatory, anti-oxidant, cholesterol lowering and immunomodulatory effects. Moreover, they have been found to possess unique anti-cancer properties.

OBJECTIVE:

The purpose of this review is to present an overview of the state of the art of TTs role in cancer prevention and treatment, as well as to describe recent patents proposing new methods for TTs isolation, chemical modification and use in cancer prevention and/or therapy.

METHODS:

Recent literature and patents focusing on TTs anti-cancer applications have been identified and reviewed, with special regard to their scientific impact and novelty.

RESULTS:

TTs have demonstrated significant anti-cancer activity in multiple tumor types, both in vitro and in vivo. Furthermore, they have shown synergistic effects when given in combination with standard anti-cancer agents or other anti-tumor natural compounds. Finally, new purification processes and transgenic sources have been designed in order to improve TTs production, and novel TTs formulations and synthetic derivatives have been developed to enhance their solubility and bioavailability.

CONCLUSION:

The promising anti-cancer effects shown by TTs in several preclinical studies may open new opportunities for therapeutic interventions in different tumors. Thus, clinical trials aimed at confirming TTs chemopreventive and tumor-suppressing activity, particularly in combination with standard therapies, are urgently needed.

Read More

A Redox-Inactive Derivative of Tocotrienol Suppresses Tumor Growth of Mesothelioma Cells in a Xenograft Model

Sato A, Arai T, Fusegi M, Ando A, Yano T

Biol Pharm Bull. 2019;42(6):1034-1037. doi: 10.1248/bpb.b18-00924.

Abstract

Malignant mesothelioma (MM) is an aggressive cancer with poor prognosis. We focused on the anticancer activity of tocotrienol (T3) and have reported that a new redox-inactive T3 derivative (6-O-carboxypropyl-α-tocotrienol; T3E) exerts stronger inhibitory effects on MM cell growth than that of T3 in vitro. Furthermore, we have revealed some mechanisms of T3E that are involved in anti-MM effects. However, the effect of T3E in vivo remains unclear. In this study, we compared the plasma concentrations of T3E to that of T3 using mice to clarify differences in pharmacokinetics. Blood was sequentially collected after oral administration of T3 or T3E, and plasma concentrations were analyzed by HPLC. The area under the plasma T3 and T3E concentration-time curve from 0 to 24 h (AUC0-24 h) of T3E was two times higher than that of T3. In addition, we evaluated the effect of T3E oral administration on tumor growth using a xenograft model of mice that were transplanted with human MM cells (H2052 cell line). Tumor volume was significantly reduced without body weight loss in mice orally administered 150 mg/kg T3E once per 2 d for 10 d, which suggests that T3E has potential anti-MM effects.

Read More

Vitamin E (α-tocopherol) consumption influences gut microbiota composition

Choi Y, Lee S, Kim S, Lee J, Ha J, Oh H, Lee Y, Kim Y, Yoon Y

Int J Food Sci Nutr. 2019 Jul 12:1-5. doi: 10.1080/09637486.2019.1639637. [Epub ahead of print]

Abstract

This study evaluated if vitamin E consumption affects gut microbiota. Mice were grouped into control, low vitamin E (LV), and high vitamin E (HV). LV and HV were fed DL-α-tocopherol at 0.06 mg/20 g and 0.18 mg/20 g of body weight per day, respectively, for 34 days. Body weight of mice was measured before and after vitamin E treatment. Animals were sacrificed, liver, spleen, small intestine and large intestine collected, and weight and length were measured. Composition of gut microbiota was determined by microbiome analysis. Spleen weight index of LV was the highest. However, liver weight indices and intestinal lengths were not different. Body weights of LV group were higher than those of control. Ratio of Firmicutes to Bacteroidetes was different in LV compared to control and HV. These results indicate that low-level consumption of vitamin E increases spleen and body weight, and changes gut microbiota.

Read More

Trolox-induced cardiac differentiation is mediated by the inhibition of Wnt/β-catenin signaling in human embryonic stem cells

Choe MS, Yeo HC, Bae CM, Han HJ, Baek KM, Kim JS, Lim KS, Shin IS, Chang WC, Yun SP, Lee HJ, Lee MY

Cell Biol Int. 2019 Jul 10. doi: 10.1002/cbin.11200. [Epub ahead of print]

Abstract

Cardiac differentiation of human pluripotent stem cells may be induced under chemically defined conditions, wherein the regulation of Wnt/β-catenin pathway is often desirable. Here, we examined the effect of trolox, a vitamin E analog, on the cardiac differentiation of human embryonic stem cells (hESCs). Trolox significantly enhanced cardiac differentiation in a time- and dose-dependent manner after the mesodermal differentiation of hESCs. Trolox promoted hESC cardiac differentiation through its inhibitory activity against the Wnt/β-catenin pathway. This study demonstrates an efficient cardiac differentiation method and reveals a novel Wnt/β-catenin regulator.

Read More

Beneficial effects of δ-tocotrienol against oxidative stress in osteoblastic cells: studies on the mechanisms of action

Casati L, Pagani F, Limonta P, Vanetti C, Stancari G, Sibilia V

Eur J Nutr. 2019 Jul 6. doi: 10.1007/s00394-019-02047-9. [Epub ahead of print]

Abstract

PURPOSE:

Natural antioxidants are considered as promising compounds in the prevention/treatment of osteoporosis. We studied the ability of purified δ-tocotrienol (δ-TT) isolated from a commercial palm oil (Elaeis guineensis) fraction to protect osteoblast MC3T3-E1 and osteocyte MLO-Y4 cells against tert-butyl hydroperoxide (t-BHP)-induced oxidative damage and the mechanisms involved in its protective action in MC3T3-E1.

METHODS:

MC3T3-E1 and MLO-Y4 cells were treated with δ-TT (1.25-20 µg/ml for 2 h) followed by t-BHP at 250 µM or 125 µM for 3 h, respectively. MTT test was used to measure cell viability. Apoptotic cells were stained with Hoechst-33258 dye. Intracellular ROS levels were measured by dichlorofluorescein CM-DCFA. The OPT fluorimetric assay was used to detect the reduced glutathione to oxidized glutathione ratio (GSH/GSSG) contents.

RESULTS:

δ-TT significantly prevented the effects of t-BHP on cell viability and apoptosis reaching a maximum protective activity at 10 and 5 µg/ml in MC3T3-E1 and MLO-Y4 cells, respectively. This protective effect was due to a reduction of intracellular ROS levels and an increase in the defense systems shown by the increase in the GSH/GSSG. GSH loss induced by an inhibitor of GSH synthesis significantly reduced the δ-TT-positive effect on ROS levels. δ-TT prevention of oxidative damage was completely removed by combined treatment with the specific inhibitors of PI3K/AKT (LY294002) and Nrf2 (ML385).

CONCLUSIONS:

The δ-TT protective effect against oxidative damage in MC3T3-E1 cells is due to a reduction of intracellular ROS levels and an increase of the GSH/GSSG ratio, and involves an interaction between the PI3K/Akt-Nrf2 signaling pathways.

Read More

Gamma radiation-induced crosslinked composite membranes based on polyvinyl alcohol/chitosan/AgNO3/vitamin E for biomedical applications

Nasef SM, Khozemy EE, Kamoun EA, El-Gendi H

Int J Biol Macromol. 2019 Jul 5;137:878-885. doi: 10.1016/j.ijbiomac.2019.07.033. [Epub ahead of print]

Abstract

Crosslinked hydrogel composite membranes based on polyvinyl alcohol (PVA) and chitosan-loaded AgNO3 and vitamin E were prepared using gamma irradiation. Chitosan has been used as antimicrobial blend materials to provide further biocompatibility for the prepared composite hydrogel membranes. The crosslinking reaction between PVA and chitosan owing to gamma irradiation was verified and characterized by FTIR analysis, while the morphology of hydrogel composite membranes was investigated by SEM. Important parameters affecting on hydrogel membranes formation, such as copolymer concentration, irradiation dose, AgNO3 concentration, plasticizer, and vitamin E of PVA/chitosan membranes were evaluated and discussed in details. In addition, the mechanical and thermal properties of hydrogel composite membranes were examined to evaluate the possibility of its application for wound dressings. The results revealed that the gelation (%) of hydrogel membranes increased dramatically with PVA composition, irradiation dose and glycerol content up to 20%; however, it decreased with AgNP incorporation due to the viscosity of copolymer composition is hyper-increased. The swelling ratio of composed hydrogel membranes decreased notably with increasing the radiation dose and incorporation of AgNP, due to reducing of the crosslinking degree of formed hydrogel membranes. PVA-Cs-Ag composed hydrogel membranes showed significant antimicrobial activity in particular against Streptococcus mutans due to the presence of AgNP in membranes, compared to other bacteria and fungi microbes. Thus, the PVA/chitosan/AgNO3-Vit.E hydrogel composite membranes showed satisfactory properties for use as wound dressing materials.

Read More