Growth inhibition of human MDA-mB-231 breast cancer cells by delta-tocotrienol is associated with loss of cyclin D1/CDK4 expression and accompanying changes in the state of phosphorylation of the retinoblastoma tumor suppressor gene product

Elangovan S, Hsieh TC, Wu JM.

Anticancer Res. 2008 Sep-Oct;28(5A):2641-7.

Tocotrienols, a subgroup within the vitamin E family of compounds, have shown antiproliferative and anticancer properties, however, the molecular basis of these effects remains to be elucidated. In this study, the effect of 3-tocotrienol on cell cycle arrest was assessed by studying the retinoblastoma protein (Rb) levels and phosphorylation status, levels of E2F (a transcription factor critically involved in the G1/S-phase transition of the mammalian cell cycle; originally identified as a DNA-binding protein essential for early region 1A-dependent activation of the adenovirus promoter designated E2), and other cell cycle controlling proteins in estrogen receptor-negative MDA-MB-231 breast cancer cells. The cell growth assay demonstrated that exposure of the MDA-MB-231 cells to 6-tocotrienol (1-20 microM) resulted in a dose- and time-dependent inhibition of cell growth as compared with vehicle treated cells and the magnitude of growth inhibition was higher at 10 and 20 microM treatment for 48 and 72 h. The phosphorylation status of Rb plays a central role in the control of the cell cycle at the G0/G1-phase. delta-Tocotrienol treatment reduced the total Rb and its phosphorylation at the Ser780, Ser795, Ser 807/811 and Thr826 positions in a dose- and time-dependent fashion. The site-specific inhibition of the phosphorylation of Rb by delta-tocotrienol was tightly associated with a marked reduction in the expression of cyclin D1 and its regulatory partner cyclin-dependant kinase 4 (CDK4), which is responsible for the phosphorylation of Rb at Ser780, Ser795, Ser 807/811 and Thr826. In addition, delta-tocotrienol also reduced the expression of E2F that occurred simultaneously with the loss of Rb phosphorylation and inhibition of cell cycle progression. Interestingly, delta-tocotrienol also caused a marked reduction in the expression of G2/M regulatory proteins including cyclin B1 and CDK1. To the best of our knowledge, this study was the first to reveal that the target of cell proliferative inhibitory action of delta-tocotrienol in a model estrogen receptor-negative human breast cancer cell line MDA-MB-231 is mediated by the loss of cyclin D1 and associated suppression of site-specific Rb phosphorylation, suggesting its future development and use as an anticancer agent.

Read Full Article Here

Vitamin E and cancer: An insight into the anticancer activities of Vitamin E isomers and analogs

Constantinou C, Papas A, Constantinou AI.

Int J Cancer. 2008 Aug 15;123(4):739-52.

Current observations in the literature suggest that vitamin E may be a suitable candidate for the adjuvant treatment of cancer. Even though historically most research focused on alpha-tocopherol, more recent evidence suggests that the other isomers of vitamin E (beta-, gamma- and delta-tocopherols and alpha-, beta-, gamma- and delta-tocotrienols) differ in their proapoptotic potencies. The main focus of this communication is the current understanding of the molecular mechanisms regulated by vitamin E isomers and their analogs during the induction of apoptosis. This review highlights that the mitochondria are the major target for the induction of apoptosis by vitamin E isomers and analogs and that the various signaling pathways regulated by these agents are likely to contribute towards maximizing the intrinsic pathway of apoptosis triggered initially by the mitochondria. Overall, the presentation of recent studies from the literature in this communication allows the drawing of the following important conclusions: (i) no direct link exists between the antioxidant activity of each isomer/derivative and proapoptotic potency, (ii) tocotrienols are more effective proapoptotic agents than tocopherols, (iii) synthetic modifications of the naturally occurring compounds may improve their apoptotic potency and (iv) vitamin E isomers and derivatives regulate caspase-independent pathways of apoptosis. The latter combined with the evidence presented in this review regarding the additive or synergistic anticarcinogenic effects obtained when vitamin E analogs are used in combination with other cancer chemotherapeutic agents, supports further research to design the most promising vitamin E derivatives and clinically test them in adjuvant chemotherapeutic treatments.

Tocotrienol-rich fraction of palm oil exhibits anti-inflammatory property by suppressing the expression of inflammatory mediators in human monocytic cells

Wu SJ, Liu PL, Ng LT.

Mol Nutr Food Res. 2008 Aug;52(8):921-9.

Tocotrienol-rich fraction (TRF) of palm oil has been shown to possess potent antioxidant, anticancer, and cholesterol lowering activities. In this study, our aim was to examine the effects of TRF on LPS-induced inflammatory response through measuring the production of inflammatory mediators, namely nitric oxide (NO), prostaglandin E(2) (PGE(2)), inducible nitric oxide synthase (iNOS), cytokines (TNF-alpha, IL-4, and IL-8), cyclooxygenase-1 and -2 (COX-1 and COX-2), and nuclear factor-kappaB (NF-kappaB) in human monocytic (THP-1) cells. At concentrations 0.5-5.0 microg/mL, TRF dose-dependently protected against LPS-induced cell death. At same concentrations, TRF also showed potent anti-inflammatory activity as demonstrated by a dose-dependent inhibition of LPS (1 microg/mL)-induced release of NO and PGE(2), and a significant decrease in the transcription of proinflammatory cytokines. TRF at 1.0 microg/mL significantly blocked the LPS induction of iNOS and COX-2 expression, but not COX-1. This anti-inflammatory activity was further supported by the inhibition of NF-kappaB expression. These results conclude that TRF possesses potent anti-inflammatory activity, and its mechanism of action could be through the inhibition of iNOS and COX-2 production, as well as NF-kappaB expression.

The effect of vitamin E on basic fibroblast growth factor level in human fibroblast cell culture

Rashid SA, Halim AS, Muhammad NA.

Med J Malaysia. 2008 Jul;63 Suppl A:69-70.

Basic fibroblast growth factor (bFGF) is angiogenic and effective in down-regulating excess collagen production. The aim of this study is to evaluate the effectiveness of vitamin E (Tocotrienol Rich Fraction) in altering the level of bFGF, a cytokine involved in the scar formation process. In this model, normal human fibroblasts were treated with various concentrations of vitamin E at different time frames. The levels of bFGF were determined by Enzyme-Linked Immunosorbant Assay (ELISA). This study demonstrated that Tocotrienol Rich Fraction (TRF) stimulated bFGF production by fibroblast and postulate that vitamin E may decrease aberrant scar formation.

Palm tocotrienol exerted better antioxidant activities in bone than alpha-tocopherol

Maniam S, Mohamed N, Shuid AN, Soelaiman IN.

Basic Clin Pharmacol Toxicol. 2008 Jul;103(1):55-60.

The aim of this study was to investigate the effects of vitamin E on the levels of lipid peroxidation and antioxidant enzymes in rat bones. Fifty-six normal male Sprague-Dawley rats, aged 3 months, were randomly divided into seven groups with eight rats in each group. The age-matched control group was given the vehicle olive oil, by oral gavage daily. Six of the treatment groups received either palm tocotrienol or pure alpha-tocopherol at the dose of 30, 60 or 100 mg/kg body weight, by oral gavage daily, 6 days a week for 4 months. Thiobarbituric acid-reactive substance (TBARS) that is an index to measure the level of lipid peroxidation and the antioxidant enzymes, glutathione peroxidase and superoxide dismutase levels were measured in the femur at the end of the study. Palm tocotrienol at the dose of 100 mg/kg body weight significantly reduced the TBARS level in the femur with a significant increase in glutathione peroxidase activity compared to the age-matched control group. These were not observed in the alpha-tocopherol groups. Palm tocotrienol was more effective than pure alpha-tocopherol acetate in suppressing lipid peroxidation in bone. Palm tocotrienol showed better protective effect against free radical damage in the femur compared to alpha-tocopherol. This study suggests that palm tocotrienol plays an important role in preventing imbalance in bone metabolism due to free radicals.

Tocotrienols, the unsaturated forms of vitamin E, can function as antioxidants and lipid protectors in tobacco leaves

Matringe M, Ksas B, Rey P, Havaux M.

Plant Physiol. 2008 Jun;147(2):764-78. Epub 2008 Apr 25.

Vitamin E is a generic term for a group of lipid-soluble antioxidant compounds, the tocopherols and tocotrienols. While tocotrienols are considered as important vitamin E components in humans, with functions in health and disease, the protective functions of tocotrienols have never been investigated in plants, contrary to tocopherols. We took advantage of the strong accumulation of tocotrienols in leaves of double transgenic tobacco (Nicotiana tabacum) plants that coexpressed the yeast (Saccharomyces cerevisiae) prephenate dehydrogenase gene (PDH) and the Arabidopsis (Arabidopsis thaliana) hydroxyphenylpyruvate dioxygenase gene (HPPD) to study the antioxidant function of those compounds in vivo. In young leaves of wild-type and transgenic tobacco plants, the majority of vitamin E was stored in thylakoid membranes, while plastoglobules contained mainly delta-tocopherol, a very minor component of vitamin E in tobacco. However, the vitamin E composition of plastoglobules was observed to change substantially during leaf aging, with alpha-tocopherol becoming the major form. Tocotrienol accumulation in young transgenic HPPD-PDH leaves occurred without any significant perturbation of photosynthetic electron transport. Tocotrienols noticeably reinforced the tolerance of HPPD-PDH leaves to high light stress at chilling temperature, with photosystem II photoinhibition and lipid peroxidation being maintained at low levels relative to wild-type leaves. Very young leaves of wild-type tobacco plants turned yellow during chilling stress, because of the strongly reduced levels of chlorophylls and carotenoids, and this phenomenon was attenuated in transgenic HPPD-PDH plants. While sugars accumulated similarly in young wild-type and HPPD-PDH leaves exposed to chilling stress in high light, a substantial decrease in tocotrienols was observed in the transgenic leaves only, suggesting vitamin E consumption during oxygen radical scavenging. Our results demonstrate that tocotrienols can function in vivo as efficient antioxidants protecting membrane lipids from peroxidation.

Read Full Article Here

Gamma-tocotrienol-induced apoptosis in human gastric cancer SGC-7901 cells is associated with a suppression in mitogen-activated protein kinase signalling.

Sun W, Wang Q, Chen B, Liu J, Liu H, Xu W.

Br J Nutr. 2008 Jun;99(6):1247-54.

Tocotrienols have been shown to inhibit proliferation and induce apoptosis in cancer cells. However, the molecular mechanisms involved in tocotrienol-induced apoptosis are still unclear. In the present study, gamma-tocotrienol induced apoptosis in human gastric adenocarcinoma SGC-7901 cell line through down regulation of the extracellular signal-regulated kinase (ERK) signalling pathway. Furthermore, gamma-tocotrienol-induced apoptosis was accompanied by down regulation of Bcl-2, up regulation of Bax, activation of caspase-3, and subsequent poly (ADP-ribose) polymerase cleavage. These results indicated that up or down regulation of Bcl-2 family proteins play a major role in the initiation of gamma-tocotrienol-induced apoptosis as an activator of caspase-3. Gamma-tocotrienol also down regulated the activation of the Raf-ERK signalling pathway, and down regulated c-Myc by decreasing the expressions of Raf-1 and p-ERK1/2 proteins. The results suggest that key regulators in tocotrienol-induced apoptosis may be Bcl-2 families and caspase-3 in SGC-7901 cells through down regulation of the Raf-ERK signalling pathway.

Dietary tocotrienol reduces UVB-induced skin damage and sesamin enhances tocotrienol effects in hairless mice

Yamada Y, Obayashi M, Ishikawa T, Kiso Y, Ono Y, Yamashita K.

J Nutr Sci Vitaminol (Tokyo). 2008 Apr;54(2):117-23.

We have previously reported that substantial amounts of tocotrienols were present in the skin of animals fed a diet containing a tocopherols andtocotrienols rich fraction (T-mix) extracted from palm oil, and further, that sesame lignans enhanced tocotrienol levels in the skin. The present studies were undertaken to determine whether dietary tocotrienols and those with sesamin could protect the skin from damage induced by UVB irradiation in hairless mice fed four diets: a vitamin E-free diet, a 50 mg/kg alpha-tocopherol diet, a 229 mg/kg T-mix (with 50 mg alpha-tocopherol) diet and a 229 mg/kg T-mix with 2 g/kg sesamin diet. In Experiment 1, mice were fed the diets for 6 wk, and half of the mice were exposed to 180 mJ/cm(2 )of UVB light once daily for 7 d. After the intensity of sunburn was scored, vitamin E and thiobarbituric acid reactive substances (TBARS) concentrations in the skin and liver were determined. In Experiment 2, hairless mice were initiated with a single application of 7, 12-dimethylbenz[a]anthracene (DMBA), then 1 wk later mice were fed the experimental diets and subjected to 180 mJ/cm(2) UVB irradiation twice weekly for 20 wk. Tumor incidences were counted once a week. Tocotrienols were detected in the skin of mice fed T-mix, but their concentrations were significantly lower than for alpha-tocopherol. Sesamin elevated tocotrienol contents in the skin. In spite of the high alpha-tocopherol contents, the effects of alpha-tocopherol on sunburn and incidence of tumor were slight. T-mix fed groups reduced the extent of sunburn and incidence of tumor, and further reduction of sunburn and incidence of tumor were observed in the T-mix with sesamin group. These results suggest that dietarytocotrienols protect the skin more strongly than alpha-tocopherol against damage induced by UVB and sesamin enhances tocotrienol effects.

Read Full Article Here

Can the therapeutic efficacy of tocotrienols in neurodegenerative familial dysautonomia patients be measured clinically?

Rubin BY, Anderson SL, Kapás L.

Antioxid Redox Signal. 2008 Apr;10(4):837-41.

Familial dysautonomia (FD) is an inherited, fatal, neurodegenerative disorder manifested by autonomic/hypertensive crises and cardiac instability. Patients produce little IKAP, the gene product of the affected mutated gene, and have low levels of monoamine oxidase A (MAO A), whose reduced presence appears to result in an increased accumulation of biogenic amines, which is a trigger for hypertensive crises. As ingestion of tocotrienols elevates IKAP and MAO A in FD patients, we examined their impact on the frequency of hypertensive crises and cardiac function. After 3 to 4 months of tocotrienol ingestion, approximately 80% of patients reported a significant (> or = 50%) decrease in the number of crises. In a smaller group of patients, a postexercise increase in heart rate and a decrease in the QT interval were observed in the majority of participants. Based on these findings, we hypothesize that tocotrienol therapy will improve the long-term clinical outlook and survival of individuals with FD.

Influence of pasture intake on the fatty acid composition, and cholesterol, tocopherols, and tocotrienols content in meat from free-range broilers

Ponte PI, Alves SP, Bessa RJ, Ferreira LM, Gama LT, Brás JL, Fontes CM, Prates JA.

Poult Sci. 2008 Jan;87(1):80-8.

Over the last centuries, Western diets acquired a dramatic imbalance in the ratio of polyunsaturated fatty acids (PUFA) to saturated fatty acids (SFA) with a concomitant reduction in the dietary proportion of n-3 PUFA. Pastures are a good source of n-3 fatty acids, although the effect of forage intake in the fatty acid profile of meat from free-range chicken remains to be evaluated. In addition, it is unknown if consumer interest in specialty poultry products derived from free-range or organic production systems is accompanied by a greater nutritional quality of these products. In this study, broilers of the RedBro Cou Nu x RedBro M genotype were fed on a cereal-based diet in portable floorless pens located either on subterranean clover (Trifolium subterraneum) or white clover (Trifolium repens) pastures. Control birds were maintained at the same site in identical pens but had no access to pasture. The capacity of ingested forage to modulate broiler meat fatty acid profiles and the meat content of total cholesterol, tocopherols, and tocotrienols was investigated in broiler chicks slaughtered at d 56. The results suggested that pasture intake (<5% DM) had a low impact on the fatty acid and vitamin E homologue profiles of meat from free-range broilers. However, breast meat from birds with free access to pasture presented lower levels of the n-6 and n-3 fatty acid precursors linoleic acid (18:2n-6) and alpha-linolenic acid (18:3n-3), respectively. In spring the levels of eicosapentaenoic acid (20:5n-3) in breast meat were significantly greater in birds consuming pastures, which suggests greater conversion of alpha-linolenic acid into eicosapentaenoic acid in these birds. Finally, when compared with meat from slower-growing genotypes obtained under the conventional European free-range production systems with slaughtering at d 81, meat from birds of the Ross genotype raised intensively and slaughtered at d 35 seemed to have greater nutritional quality.