Interactions between vitamin E homologues and ascorbate free radicals in murine skin homogenates irradiated with ultraviolet light

Kitazawa M, Podda M, Thiele J, Traber MG, Iwasaki K, Sakamoto K, Packer L.

Photochem Photobiol. 1997 Feb;65(2):355-65.

The mechanism of oxidation of ascorbic acid in mouse skin homogenates by UV light was investigated by measuring ascorbate free radical formation using electron spin resonance signal formation. Addition of vitamin E (alpha-tocopherol or alpha-tocotrienol) had no effect, whereas short-chain homologues (2,5,7,8-tetramethyl-6-hydroxychroman-2-carboxylic acid [Trolox] and 2,2,5,7,8-pentamethyl-6-hydroxychromane [PMC]) accelerated ascorbate oxidation. The similar hydrophilicity of ascorbate, Trolox and PMC increased their interaction, thus rapidly depleting ascorbate. When dihydrolipoic acid was added simultaneously with the vitamin E homologues, the accelerated ascorbate oxidation was prevented. This was due to the regeneration of ascorbate and PMC from their free radicals by a recycling mechanism between ascorbate, vitamin E homologues and dihydrolipoic acid. Potentiation of antioxidant recycling may be protective against UV irradiation-induced damage. The rate of ascorbate oxidation in the presence of vitamin E homologues was enhanced by a photosensitizer (riboflavin) but was not influenced by reactive oxygen radical quenchers, superoxide dismutase or 5,5-dimethyl-1-pyrroline-N-oxide. These experimental results suggest that the UV irradiation-induced ascorbate oxidation in murine skin homogenates is caused by photoactivated reactions rather than reactive oxygen radical reactions.

Ozone depletes tocopherols and tocotrienols topically applied to murine skin

Thiele JJ, Traber MG, Podda M, Tsang K, Cross CE, Packer L.

FEBS Lett. 1997 Jan 20;401(2-3):167-70.

To evaluate ozone damage to hairless mouse skin, two parameters of oxidative damage, vitamin E depletion and malondialdehyde (MDA) production, were measured in vitamin E-enriched and in control skin from mice exposed to ozone (10 ppm). A 5% vitamin E solution (tocotrienol-rich fraction, TRF) in polyethylene glycol (PEG) was applied to 2 sites on the back of hairless mice, PEG to 2 sites. After 2 h, the sites were washed, one of each pair of sites covered and the mice exposed ozone for 2 h. Ozone exposure (compared with covered sites) increased epidermal MDA in PEG-treated sites, while vitamin E was unchanged. In contrast, ozone exposure significantly depleted vitamin E in TRF-treated sites, while significant MDA accumulation was prevented. This is the first demonstration that ozone exposure causes damage to cutaneous lipids, an effect which can be attenuated by vitamin E application.

Nitrofurantoin-induced hepatic and pulmonary biochemical changes in mice fed different vitamin E doses

Adam A, Marzuki A, Ngah WZ, Top GM.

Pharmacol Toxicol. 1996 Dec;79(6):334-9.

The hepatic and pulmonary effects of nitrofurantoin (40 mg/kg, intraperitoneally) were determined at 4 and 24 hr following its administration in mice fed for 10 weeks with a vitamin E sufficient, deficient or enriched diet. Liver glutathione (GSH) was reduced by nitrofurantoin at 4 hr but was unchanged 20 hr later. Nitrofurantoin did not affect liver glutathione peroxidase, glutathione reductase or superoxide dismutase activities. Liver catalase activities were decreased by nitrofurantoin at 4 hr. Lung GSH levels were increased whilst glutathione peroxidase activity was decreased at 4 and 24 hr. Lung glutathione reductase activity was reduced in certain groups. Nitrofurantoin did not affect lung superoxide dismutase, but catalase was decreased at 24 hr. Liver malondialdehyde levels were increased by nitrofurantoin in the vitamin E deficient group whilst lung malondialdehyde levels remained unchanged. Both liver and lung malondialdehyde levels were unaffected by vitamin E supplementation when compared to the vitamin E-sufficient group. These results suggest that nitrofurantoin (40 mg/kg) was deleterious to the liver and lung. Nitrofurantoin-induced lipid peroxidation was seen in vitamin E deficiency but an increase in dietary vitamin E content did not provide additional protection compared to the recommended daily allowance. The antioxidant activities of alpha-tocopherol and gamma-enriched tocotrienol were similar.

The chemistry and antioxidant properties of tocopherols and tocotrienols

Kamal-Eldin A, Appelqvist LA.

Lipids. 1996 Jul;31(7):671-701.

This article is a review of the fundamental chemistry of the tocopherols and tocotrienols relevant to their antioxidant action. Despite the general agreement that alpha-tocopherol is the most efficient antioxidant and vitamin E homologue in vivo, there was always a considerable discrepancy in its “absolute” and “relative” antioxidant effectiveness in vitro, especially when compared to gamma-tocopherol. Many chemical, physical, biochemical, physicochemical, and other factors seem responsible for the observed discrepancy between the relative antioxidant potencies of the tocopherols in vivo and in vitro. This paper aims at highlighting some possible reasons for the observed differences between the tocopherols (alpha-, beta-, gamma-, and delta-) in relation to their interactions with the important chemical species involved in lipid peroxidation, specifically trace metal ions, singlet oxygen, nitrogen oxides, and antioxidant synergists. Although literature reports related to the chemistry of the tocotrienols are quite meager, they also were included in the discussion in virtue of their structural and functional resemblance to the tocopherols.

 

Effect of tocotrienols on the growth of a human breast cancer cell line in culture

Nesaretnam K, Guthrie N, Chambers AF, Carroll KK.

Lipids. 1995 Dec;30(12):1139-43.

The tocotrienol-rich fraction (TRF) of palm oil consists of tocotrienols and some alpha-tocopherol (alpha-T). Tocotrienols are a form of vitamin E having an unsaturated side-chain, rather than the saturated side-chain of the more common tocopherols. Because palm oil has been shown not to promote chemically-induced mammary carcinogenesis, we tested effects of TRF and alpha-T on the proliferation, growth, and plating efficiency (PE) of the MDA-MB-435 estrogen-receptor-negative human breast cancer cells. TRF inhibited the proliferation of these cells with a concentration required to inhibit cell proliferation by 50% of 180 microgram/mL whereas alpha-T had no effect at concentrations up to 1000 microgram/mL as measured by incorporation of [3H]thymidine. The effects of TRF and alpha-T also were tested in longer-term growth experiments, using concentrations of 180 and 500 microgram/mL. We found that TRF inhibited the growth of these cells by 50%, whereas alpha-T did not. Their effect on the ability of these cells to form colonies also was studied, and it was found that TRF inhibited PE, whereas alpha T had no effect. These results suggest that the inhibition is due to the presence of tocotrienols in TRF rather than alpha T.

Response of hypercholesterolemic subjects to administration of tocotrienols

Qureshi AA, Bradlow BA, Brace L, Manganello J, Peterson DM, Pearce BC, Wright JJ, Gapor A, Elson CE.

Lipids. 1995 Dec;30(12):1171-7.

The cholesterol-suppressive actions of Palmvitee and gamma-tocotrienol were assessed in hypercholesterolemic subjects after acclimation to the American Heart Association Step 1 dietary regimen for four and eight weeks, respectively. The four-week dietary regimen alone elicited a 5% decrease (P < 0.05) in the cholesterol level of the 36 subjects. Subjects continuing on the dietary regimen for a second four-week period experienced an additional 2% decrease in their cholesterol levels. Dietary assessments based on unanticipated recalls of 24-h food intake records suggest that significant reductions in energy and fat, predominantly in saturated fat, intakes are responsible. The subjects experienced significant Palmvitee- and gamma-tocotrienol-mediated decreases in cholesterol. The group of subjects acclimated to the dietary regimen for four weeks responded to Palmvitee (a blend of tocols providing 40 mg alpha-tocopherol, 48 mg alpha-tocotrienol, 112 mg gamma-tocotrienol, and 60 mg delta-to-cotrienol/day for four weeks) with a 10% decrease in cholesterol (P < 0.05). Dietary assessments showed no further change in energy and fat intakes. alpha-Tocopherol attenuated the cholesterol-suppressive action of the tocotrienols. The second group of subjects, acclimated to the dietary regimen for eight weeks, received 200 mg gamma-tocotrienol/d for four weeks. The cholesterol-suppressive potency of this alpha-tocopherol-free preparation was calculated to be equivalent to that of the mixture of tocotrienols (220 mg) used in the prior study. Cholesterol levels of the 16 subjects in the second group decreased 13% (P < 0.05) during the four-week trial. Plasma apolipoprotein B and ex vivo generation of thromboxane B2 were similarly responsive to the tocotrienol preparations, whereas neither preparation had an impact on high density lipoprotein cholesterol and apolipoprotein A-1 levels.

Antioxidant effects of tocotrienols in patients with hyperlipidemia and carotid stenosis

Tomeo AC, Geller M, Watkins TR, Gapor A, Bierenbaum ML.

Lipids. 1995 Dec;30(12):1179-83.

Antioxidants may have a role in the prevention of atherosclerosis. In the present trial,  the antioxidant properties of Palm Vitee, a gamma-tocotrienol-, and alpha-tocopherol enriched fraction of palm oil, in patients with carotid atherosclerosis were investigated. Serum lipids, fatty acid peroxides, platelet aggregation and carotid artery stenosis were measured over an 18-month period in fifty patients with cerebrovascular disease. Change in stenosis was measured with duplex ultrasonography. Ultrasound scans were done at six months, twelve months, and yearly thereafter. Bilateral duplex ultrasonography revealed apparent carotid atherosclerotic regression in seven and progression in two of the 25 tocotrienol patients, while none of the control group exhibited regression and ten of 25 showed progression (P < 0.002). Serum thiobarbituric acid reactive substances, an ex vivo indicator of maximal platelet peroxidation, decreased in the treatment group from 1.08 +/- 0.70 to 0.80 +/- 0.55 microM/L (P < 0.05) after 12 mon, and in the placebo group, they increased nonsignificantly from 0.99 +/- 0.80 to 1.26 +/- 0.54 microM/L. Both tocotrienol and placebo groups displayed significantly attenuated collagen-induced platelet aggregation responses (P < 0.05) as compared with entry values. Serum total cholesterol, low density lipoprotein cholesterol, and triglyceride values remained unchanged in both groups, as did the plasma high density lipoprotein cholesterol values. These findings suggest that antioxidants, such as tocotrienols, may influence the course of carotid atherosclerosis.

Vitamins E and C, beta-carotene, and other carotenoids as antioxidants

Sies H, Stahl W.

Am J Clin Nutr. 1995 Dec;62(6 Suppl):1315S-1321S.

Tocopherols and tocotrienols (vitamin E), ascorbic acid (vitamin C), and the carotenoids react with free radicals, notably peroxyl radicals, and with singlet molecular oxygen (1O2), which is the basis for their function as antioxidants. RRR-alpha-Tocopherol is the major peroxyl radical scavenger in biological lipid phases such as membranes or low-density lipoproteins. Ascorbic acid is present in aqueous compartments (eg, cytosol, plasma, and other body fluids) and can reduce the tocopherol radical; it also has several metabolically important cofactor functions in enzyme reactions, especially hydroxylations. These micronutrients need to be regenerated on oxidation in the biological setting, hence the need for further coupling to nonradical reducing systems such as glutathione-glutathione disulfide, dihydrolipoate-lipoate, or NADPH-NADP+ and NADH-NAD+. Carotenoids, such as beta-carotene, lycopene, and some oxycarotenoids, eg, zeaxanthin and lutein, exert antioxidant functions in lipid phases by quenching 1O2 or free radicals. There are pronounced differences in tissue carotenoid patterns, extending also to the distribution between the all-trans and various cis isomers of the respective carotenoids. Physical quenching leaves the structure intact, so that in this mode the carotenoids do not require a regeneration reaction.

Tocotrienols from palm oil as potent inhibitors of lipid peroxidation and protein oxidation in rat brain mitochondria

Kamat JP, Devasagayam TP.

Neurosci Lett. 1995 Aug 11;195(3):179-82.

The tocotrienol-rich-fraction (TRF) from palm oil, being tried as a more economical and efficient substitute for alpha-tocopherol, significantly inhibited oxidative damage in vitro to both lipids and proteins in rat brain mitochondria induced by ascorbate-Fe2+, the free radical initiator azobis(2-amidopropane)dihydrochloride (AAPH) and photosensitisation. The observed inhibitory effect was both time- and concentration-dependent. At a low concentration of 5 microM, TRF can significantly inhibit oxidative damage to both lipids and proteins. The inhibitory effect of TRF seems to be mainly due to gamma-tocotrienol and to a lesser extent alpha- and delta-tocotrienols. TRF was significantly more effective than alpha-tocopherol. This fraction from palm oil can be considered a natural antioxidant supplement capable of protecting the brain against oxidative damage and thereby from the ensuing adverse alterations.

Coupling the cholesterol- and tumor-suppressive actions of palm oil to the impact of its minor constituents on 3-hydroxy-3-methylglutaryl coenzyme A reductase activity

Elson CE, Qureshi AA.

Prostaglandins Leukot Essent Fatty Acids. 1995 Feb;52(2-3):205-7.

The impact of palm oil on cardiovascular disease and cancer may be explained by the mevalonate-suppressive action of constituent isoprenoid end products of plant secondary metabolism. Assorted monoterpenes, sesquiterpenes, carotenoids and tocotrienols down regulate, post-transcriptionally, 3-hydroxy-3-methylglutaryl coenzyme A reductase activity thereby modestly decreasing cholesterol synthesis and concomitantly decreasing LDL cholesterol. The reductase activity in tumor tissues differs from that of liver in being resistant to sterol feedback regulation. Tumor reductase activity retains sensitivity to the post-transcriptional regulation. As a consequence, the isoprenoid-mediated suppression of mevalonate synthesis depletes tumor tissues of two intermediate products, farnesyl pyrophosphate and geranylgeranyl pyrophosphate, which are incorporated post-translationally into growth control-associated proteins.