Tocotrienols of palm oil have been shown to possess potent neuroprotective, antioxidative, anticancer, and cholesterol-lowering activities. In this study, the authors examined the antiproliferative effects of alpha-, gamma- and delta-tocotrienols (alphaT3, gammaT3, and deltaT3), and alpha-tocopherol (alphaT) in human cervical carcinoma (HeLa) cells. Their mechanism(s) of action on cell cycle signaling pathway were also investigated. RESULTS: 3.19 +/- 0.05 microM) and gammaT3 (IC(50): 2.85 +/- 0.07 microM) was more potent than deltaT3 (IC(50): >100 microM) and alphaT (IC(50): 69.46 +/- 3.01 microM). Both alphaT3 and gammaT3 also demonstrated a dose-dependent and time-dependent induction of cell death.They caused cell cycle arrest at G2/M phase and triggered apoptosis as displayed by the externalization of annexin V-targeted phosphatidylserine and accumulation of sub-G1 peak. At a concentration of 3 microM, alphaT3 downregulated the expression of cyclin D3, p16, and CDK6, while having no effect on cyclin D1, p15, p21, p27, and CDK4 expression. However, gammaT3 showed no effect on these proteins. The induction of HeLa cell apoptosis by alphaT3 and gammaT3 appeared to be associated with the expression of IL-6, but not the other cytokines (IFN-gamma, IL-2, and IL-10).Taken together, the results suggest that alphaT3 and gammaT3 are more effective than deltaT3 and alphaT in inhibiting HeLa cell proliferation, and their mode of action could be through the upregulation of IL-6, and the downregulation of cyclin D3, p16, and CDK6 expression in the cell cycle signaling pathway.
Publications
Vitamin E tocotrienols improve insulin sensitivity through activating peroxisome proliferator-activated receptors
Fang F, Kang Z, Wong C.
Mol Nutr Food Res. 2010 Mar;54(3):345-52
Vitamin E is comprised of two classes of compounds: tocopherols and tocotrienols. Tocotrienol-enriched palm oil has been shown to help reduce blood glucose levels in patients and preclinical animal models. However, the mechanistic basis for tocotrienol action is not well established. Peroxisome proliferator-activated receptors alpha, gamma, and delta (PPARalpha, PPARgamma, and PPARdelta) are ligand-regulated transcription factors that play essential roles in energy metabolism. Importantly, synthetic PPARalpha and PPARgamma ligands are currently used for treating hyperlipidemia and diabetes. In this study, we present data that tocotrienols within palm oil functioned as PPAR modulators. Specifically, both alpha- and gamma-tocotrienol activated PPARalpha, while delta-tocotrienol activated PPARalpha, PPARgamma, and PPARdelta in reporter-based assays. Tocotrienols enhanced the interaction between the purified ligand-binding domain of PPARalpha with the receptor-interacting motif of coactivator PPARgamma coactivator-1alpha. In addition, the tocotrienol-rich fraction of palm oil improved whole body glucose utilization and insulin sensitivity of diabetic Db/Db mice by selectively regulating PPAR target genes. These lines of evidence collectively suggested that PPARs represent a set of molecular targets of tocotrienols.
Tocotrienols, the vitamin E of the 21st century: its potential against cancer and other chronic diseases
Aggarwal BB, Ahn KS, Sundaram C, Prasad S, Kannappan R.
Biochem Pharmacol,2010;80(11):1613-31
Initially discovered in 1938 as a “fertility factor,” vitamin E now refers to eight different isoforms that belong to two categories, four saturated analogues (alpha, beta, gamma, and delta) called tocopherols and four unsaturated analogues referred to as tocotrienols. While the tocopherols have been investigated extensively, little is known about the tocotrienols. Very limited studies suggest that both the molecular and therapeutic targets of the tocotrienols are distinct from those of the tocopherols. For instance, suppression of inflammatory transcription factor NF-kappaB, which is closely linked to tumorigenesis and inhibition of HMG-CoA reductase, mammalian DNA polymerases and certain protein tyrosine kinases, is unique to the tocotrienols. This review examines in detail the molecular targets of the tocotrienols and their roles in cancer, bone resorption, diabetes, and cardiovascular and neurological diseases at both preclinical and clinical levels. As disappointment with the therapeutic value of the tocopherols grows, the potential of these novel vitamin E analogues awaits further investigation.
Synergistic actions of atorvastatin with gamma-tocotrienol and celecoxib against human colon cancer HT29 and HCT116 cells
Yang Z, Xiao H, Jin H, Koo PT, Tsang DJ, Yang CS.
Int J Cancer. 2010 Feb 15;126(4):852-63.
The synergistic actions of atorvastatin (ATST) with gamma-tocotrienol (gamma-TT) and celecoxib (CXIB) were studied in human colon cancer cell lines HT29 and HCT116. The synergistic inhibition of cell growth by ATST and gamma-TT was demonstrated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and isobologram analysis. delta-TT exhibited a similar inhibitory action when combined with ATST. Mevalonate and geranylgeranyl pyrophosphate eliminated most of the growth inhibitory effect of ATST, but only marginally decreased that of gamma-TT; whereas farnesyl pyrophosphate and squalene exhibited little effect on the inhibitory action of ATST and gamma-TT, indicating protein geranylgeranylation, but not farnesylation are involved in the inhibition of colon cancer cell growth. Both mevalonate and squalene restored the cellular cholesterol level that was reduced by ATST treatment, but only mevalonate eliminated the cell growth inhibitory effect, suggesting that the cholesterol level in cells does not play an essential role in inhibiting cancer cell growth. Protein level of HMG-CoA reductase increased after ATST treatment, and the presence of gamma-TT attenuated the elevated level of HMG-CoA reductase. ATST also decreased membrane-bound RhoA, possibly due to a reduced level of protein geranylgeranylation; addition of gamma-TT enhanced this effect. The mediation of HMG-CoA reductase and RhoA provides a possible mechanism for the synergistic action of ATST and gamma-TT. The triple combination of ATST, gamma-TT and CXIB showed a synergistic inhibition of cancer cell growth in MTT assays. The synergistic action of these three compounds was also illustrated by their induction of G(0)/G(1) phase cell cycle arrest and apoptosis.
Punicic acid is an omega-5 fatty acid capable of inhibiting breast cancer proliferation
Grossmann ME, Mizuno NK, Schuster T, Cleary MP.
Int J Oncol. 2010 Feb;36(2):421-6.
Pomegranate extracts have been used as anticancer agents and they contain a large number of potentially bioactive substances. Punicic acid is an omega-5 long chain polyunsaturated fatty acid found in Punica granatum (pomegranate) seed oil. A number of long chain fatty acids have been reported to have cancer preventive actions. Here we investigated the potential ability of punicic acid to affect growth of both an estrogen insensitive breast cancer cell line (MDA-MB-231) and an estrogen sensitive cell line developed from the MDA-MB-231 cells (MDA-ERalpha7). Proliferation was inhibited 92 and 96% for MDA-MB-231 and MDA-ERalpha7 cells, respectively compared to untreated cells by 40 microM punicic acid. Furthermore, punicic acid induced apoptosis in the MDA-MB-231 and MDA-ERalpha7 cells by 86 and 91%, respectively compared to untreated control cells and disrupted cellular mitochondrial membrane potential. We also investigated whether lipid oxidation was required for the function of punicic acid by adding 20 microM of the antioxidant tocotrienol to the assays. This resulted in reversal of the effects of punicic acid on proliferation inhibition, apoptosis and disruption of the mitochondrial membrane potential. Finally, we evaluated the role of PKC signaling in the anti-cancer effects of punicic acid by performing proliferation assays in the presence of the PKC inhibitor bisindolymaleimide I. Proliferation inhibition by punicic acid was partially blocked in both the MDA-MB-231 and MDA-ERalpha7 cells. These results suggest that punicic acid has breast cancer inhibitor properties that are dependent on lipid peroxidation and the PKC pathway.
Combined gamma-tocotrienol and erlotinib/gefitinib treatment suppresses Stat and Akt signaling in murine mammary tumor cells
Bachawal SV, Wali VB, Sylvester PW.
Anticancer Res. 2010 Feb;30(2):429-37.
BACKGROUND: Heterodimer cooperation between ErbB receptors has limited clinical usefulness of receptor tyrosine kinase inhibitors (TKIs), erlotinib and gefitinib in the treatment of cancer. However, combination treatment of TKIs with gamma-tocotrienol targets multiple ErbB receptors and significantly inhibit +SA murine mammary tumor cell growth.
MATERIALS AND METHODS: Cell proliferation was determined by tetrazolium (MTT) assay and immunofluorescent Ki-67 staining. Western blot analysis was used to determine treatment effects on epidermal growth factor (EGF)-dependent mitogenic signaling.
RESULTS: Combined treatment of 3 microM gamma-tocotrienol with 0.25 microM erlotinib or 0.5 microM gefitinib significantly inhibited +SA cell growth and reduced cyclin D1 and phosphorylated (active) Pdk-1, Akt, Stat3 and Stat5 levels.
CONCLUSION: Combined treatment of gamma-tocotrienol with erlotinib or gefitinib prevents ErbB receptor heterodimer cooperation and inhibits EGF-dependent mitogenic signaling in +SA murine mammary tumor cells. These findings strongly suggest that combination treatment may significantly improve therapeutic responsiveness in breast cancer patients.
Anti-proliferative effects of gamma-tocotrienol on mammary tumour cells are associated with suppression of cell cycle progression
Samant GV, Wali VB, Sylvester PW.
Cell Prolif. 2010 Feb;43(1):77-83
Objectives: Previous studies have shown that gamma-tocotrienol induces potent anti-proliferative effects on +SA mammary tumour cells in culture; here, investigations have been conducted to determine its effects on intracellular signalling proteins involved in regulating cell cycle progression.
Materials And Methods: +SA cells were maintained in mitogen-free defined media containing 0 or 4 micromgamma-tocotrienol, for 48 h to synchronize cell cycle in G(0) phase, and then they were exposed to 100 ng/ml EGF to initiate cell cycle progression. Whole cell lysates were collected at various time points from each treatment group and were prepared for Western blot analysis.
Results And Conclusions: Treatment with 4 micromgamma-tocotrienol significantly inhibited +SA cell proliferation over a 4-day culture period. Moreover, this treatment resulted in a relatively large reduction in cyclin D1, cyclin dependent kinase (CDK)4, CDK2 and CDK6 levels, between 4 and 24 h after EGF exposure. Tocotrienol treatment also resulted in a relatively large increase in CDK inhibitor (CKI) p27, prior to and after EGF exposure, but had little effect on levels of CKIs, p21 and p15. Tocotrienol treatment also induced a large relative reduction in retinoblastoma (Rb) protein phosphorylation at ser780 and ser807/811. These findings strongly suggest that anti-proliferative effects of gamma-tocotrienol are associated with reduction in cell cycle progression from G(1) to S, as evidenced by increased p27 levels, and a corresponding decrease in cyclin D1, CDK2, CDK4, CDK6 and phosphorylated Rb levels.
Influence of palm oil on doxorubicin induced cytotoxicity in normal and tumor cell cultures
Postescu ID, Virag P, Achim M, Fischer-Fodor E.
Phytother Res. 2010 Jan;24(1):154-6.
The vitamin E of palm oil, unlike most other vegetal fats, consists largely of tocotrienols (TT), products previously reported as having antioxidant and tumor-inhibitory properties. A tocotrienols containing palm oil, in the form of liposomes entrapping dosages of 0.5-0.05 microgTT/mL, was studied in combined treatments with doxorubicin (30 min before drug administration). The IC(50) values of doxorubicin, at 24 h, showed that its cytotoxic effects were decreased by palm oil, in a dose effect relationship (p < 0.01, ANOVA), in both normal (Hfl-1, Huvec) and tumor (HepG2, Mls) cells. These results demonstrated an unselective protective activity of tocotrienols, in vitro, on some normal and tumor cultured cells treated with doxorubicin.
Tocotrienols are good adjuvants for developing cancer vaccines
Hafid SR, Radhakrishnan AK, Nesaretnam K.
BMC Cancer. 2010 Jan 6;10:5.
Background: Dendritic cells (DCs) have the potential for cancer immunotherapy due to their ability to process and present antigens to T-cells and also in stimulating immune responses. However, DC-based vaccines have only exhibited minimal effectiveness against established tumours in mice and humans. The use of appropriate adjuvant enhances the efficacy of DC based cancer vaccines in treating tumours.
Methods: In this study we have used tocotrienol-rich fraction (TRF), a non-toxic natural compound, as an adjuvant to enhance the effectiveness of DC vaccines in treating mouse mammary cancers. In the mouse model, six-week-old female BALB/c mice were injected subcutaneously with DC and supplemented with oral TRF daily (DC+TRF) and DC pulsed with tumour lysate from 4T1 cells (DC+TL). Experimental mice were also injected with DC pulsed with tumour lysate and supplemented daily with oral TRF (DC+TL+TRF) while two groups of animal which were supplemented daily with carrier oil (control) and with TRF (TRF). After three times vaccination, mice were inoculated with 4T1 cells in the mammary breast pad to induce tumour.
Results: Our study showed that TRF in combination with DC pulsed with tumour lysate (DC+TL+TRF) injected subcutaneously significantly inhibited the growth of 4T1 mammary tumour cells as compared to control group. Analysis of cytokines production from murine splenocytes showed significant increased productions of IFN-gamma and IL-12 in experimental mice (DC+TL+TRF) compared to control, mice injected with DC without TRF, mice injected with DC pulsed with tumour lysate and mice supplemented with TRF alone. Higher numbers of cytotoxic T cells (CD8) and natural killer cells (NK) were observed in the peripheral blood of TRF adjuvanted DC pulsed tumour lysate mice.
Conclusion: Our study show that TRF has the potential to be an adjuvant to augment DC based immunotherapy.
Gamma-tocotrienol prevents oxidative stress-induced telomere shortening in human fibroblasts derived from different aged individuals
Makpol S, Abidin AZ, Sairin K, Mazlan M, Top GM, Ngah WZ.
Oxid Med Cell Longev. 2010 Jan-Feb;3(1):35-43.
The effects of palm gamma-tocotrienol (GGT) on oxidative stress-induced cellular ageing was investigated in normal human skin fibroblast cell lines derived from different age groups; young (21-year-old, YF), middle (40-year-old, MF) and old (68-year-old, OF). Fibroblast cells were treated with gamma-tocotrienol for 24 hours before or after incubation with IC50 dose of H2O2 for 2 hours. Changes in cell viability, telomere length and telomerase activity were assessed using the MTS assay (Promega, USA), Southern blot analysis and telomere repeat amplification protocol respectively. Results showed that treatment with different concentrations of gamma-tocotrienol increased fibroblasts viability with optimum dose of 80 microM for YF and 40 microM for both MF and OF. At higher concentrations, gamma-tocotrienol treatment caused marked decrease in cell viability with IC50 value of 200 microM (YF), 300 microM (MF) and 100 microM (OF). Exposure to H2O2 decreased cell viability in dose dependent manner, shortened telomere length and reduced telomerase activity in all age groups. The IC50 of H2O2 was found to be; YF (700 microM), MF (400 microM) and OF (100 microM). Results showed that viability increased significantly (p < 0.05) when cells were treated with 80 microM and 40 microM gamma-tocotrienol prior or after H2O2-induced oxidative stress in all age groups. In YF and OF, pretreatment with gamma-tocotrienolprevented shortening of telomere length and reduction in telomerase activity. In MF, telomerase activity increased while no changes in telomere length was observed. However, post-treatment of gamma-tocotrienol did not exert any significant effects on telomere length and telomerase activity. Thus, these data suggest that gamma-tocotrienol protects against oxidative stress-induced cellular ageing by modulating the telomere length possibly via telomerase.