Association Between Vitamin E and Handgrip Strength in the Korean General Population in KNHANES VII (2018

Nodam Park, Soo A Kim, Kiyoung Oh, Yuntae Kim, Siha Park, Joon Yeop Kim, Namhun Heo

Ann Rehabil Med . 2021 Jun 14. doi: 10.5535/arm.21038. Online ahead of print.

Abstract

Objective: To investigate the association between vitamin E and handgrip strength (HGS) with multiple factors.

Methods: A total of 1,814 participants were included (822 men and 981 women) from the Korean subjects of the 7th Korea National Health and Nutrition Examination Survey in 2018. Data were analyzed using multiple logistic regression to determine the correlation between vitamin E and HGS with potential confounding factors.

Results: In the multiple logistic regression model, only the young age group (19-40 years) of men showed a positive relationship between vitamin E and HGS. However, in older age groups (41-80 years) of men and all age groups of women, there was no statistically significant result. After adjusting for confounding factors, young men showed higher vitamin E levels and higher HGS. Conversely, women and older age groups did not show significant results after adjusting for confounding factors.

Conclusion: In this study, the serum vitamin E level had a positive effect on HGS in young men (<40 years). Further research is needed on this topic regarding vitamin E intake and other objective measures.

Read More

The effect of vitamin E treatment on selected immune and oxidative parameters in Kivircik ewes suffering from transport stress

Erdem Danyer, Tanay Bilal, Ayşen Altiner, İsmail Aytekin, Hasan Atalay

J Anim Physiol Anim Nutr (Berl) . 2021 Jun 11. doi: 10.1111/jpn.13560. Online ahead of print.

Abstract

The study aimed to investigate the effects of vitamin E injection for the prevention of transport stress on ewes. Kivircik ewes (2-3 years old, n = 24) were randomly separated into three groups; G1 (Control) and G2 treated with 14 ml. saline as the placebo, G3 treated with 2100 IU/ind. DL-alpha-tocopherol acetate prior to transport. G2 and G3 were transported at 80 km/h for 4 h on a truck. Serum samples were obtained before (T0) and after (T1) transport. Serum cortisol, catalase, IgG, ceruloplasmin, C-reactive protein, complement component 4, interleukin-1 beta, tumour necrosis factor-alpha, glutathione peroxidase (GPx), superoxide dismutase, malondialdehyde analyses performed by ELISA, and serum alpha-tocopherol concentrations were evaluated by HPLC-UV. Wilcoxon and Kruskal-Wallis tests were used for statistical assessments (p < 0.05). Alpha-tocopherol concentrations were founded 1.22 ± 0.82, 0.27 ± 0.14 and 0.14 ± 0.07 µmol/L, respectively, in G1, G2 and G3 at T1. Alpha-tocopherol concentration decreased significantly in G2 between T0 and T1. GPx concentrations were increased twofold in G2 and G3 between T0 and T1 (p < 0.01). As a result, G2 alpha-tocopherol concentrations decreased but, the stress and oxidative parameters tested in this study were not affected by treating 2100 IU/ind. DL-alpha-tocopherol acetate before transport.

Read More

Vitamin A and Vitamin E: Will the Real Antioxidant Please Stand Up?

William S Blaner, Igor O Shmarakov, Maret G Traber

Annu Rev Nutr . 2021 Jun 11. doi: 10.1146/annurev-nutr-082018-124228. Online ahead of print.

Abstract

Vitamin A, acting through its metabolite, all-trans-retinoic acid, is a potent transcriptional regulator affecting expression levels of hundreds of genes through retinoic acid response elements present within these genes. However, the literature is replete with claims that consider vitamin A to be an antioxidant vitamin, like vitamins C and E. This apparent contradiction in the understanding of how vitamin A acts mechanistically within the body is a major focus of this review. Vitamin E, which is generally understood to act as a lipophilic antioxidant protecting polyunsaturated fatty acids present in membranes, is often proposed to be a transcriptional regulator. The evaluation of this claim is another focus of the review. We conclude that vitamin A is an indirect antioxidant, whose indirect function is to transcriptionally regulate a number of genes involved in mediating the body’s canonical antioxidant responses. Vitamin E, in addition to being a direct antioxidant, enables the increase of peroxidized lipids that alter both metabolic pathways and gene expression profiles within tissues and cells. However, there is little compelling evidence that vitamin E has a direct transcriptional mechanism like that of vitamin A. Thus, we propose that the term antioxidant not be applied to vitamin A, and we discourage the use of the term transcriptional mediator when discussing vitamin E.

Read More

Gene Expression of CRAL_TRIO Family Proteins modulated by Vitamin E Deficiency in Zebrafish (Danio Rerio)

Alexander T Watt, Brian Head, Scott W Leonard, Robyn L Tanguay, Maret G Traber

J Nutr Biochem . 2021 Jun 10;108801. doi: 10.1016/j.jnutbio.2021.108801. Online ahead of print.

Abstract

An evaluation of the impact of vitamin E deficiency on expression of the alpha-tocopherol transfer protein (α-TTP) and related CRAL_TRIO genes was undertaken using livers from adult zebrafish based on the hypothesis that increased lipid peroxidation would modulate gene expression. Zebrafish were fed either a vitamin E sufficient (E+) or deficient (E-) diet for 9 months, then fish were euthanized, and livers were harvested. Livers from the E+ relative to E- fish contained 40-times more α-tocopherol (P<0.0001) and one fourth the malondialdehyde (P = 0.0153). RNA was extracted from E+ and E- livers, then subject to evaluation of gene expression of ttpa and other genes of the CRAL_TRIO family, genes of antioxidant markers, and genes related to lipid metabolism. Ttpa expression was not altered by vitamin E status. However, one member of the CRAL_TRIO family, tyrosine-protein phosphatase non-receptor type 9 gene (ptpn9a), showed a 2.4-fold increase (P=0.029) in E- relative to E+ livers. Further, we identified that the gene for choline kinase alpha (chka) showed a 3.0-fold increase (P=0.010) in E- livers. These outcomes are consistent with our previous findings that show vitamin E deficiency increased lipid peroxidation causing increases in phospholipid turnover.

Read More

Dietary share of ultra-processed foods and its association with vitamin E biomarkers in Brazilian lactating women

N C M Amorim, A G C L Silva, A S Rebouças, D S Bezerra, M S R Lima, J F Pires, L C P Liberalino, R Dimenstein, K D S Ribeiro

Br J Nutr . 2021 Jun 9;1-23. doi: 10.1017/S0007114521001963. Online ahead of print.

Abstract

Despite evidence showing that the intake of ultra-processed food has a negative impact on health, diet quality and dietary vitamin E, its impact on vitamin E nutritional status and breast milk remains unknown. This study aimed to assess the influence of the consumption of ultra-processed foods on vitamin E biomarkers of lactating women. A cross-sectional study was performed with 294 lactating women. Food consumption was obtained by 24-hour dietary recall and foods were grouped according to the NOVA classification. Levels of alpha-tocopherol were analyzed by High Performance Liquid Chromatography. Breast milk vitamin E (BMVE) adequacy was based on the quantity of the vitamin in the estimated intake volume. The Kruskal-Wallis test was used to compare the tertiles and linear regression to association between ultra-processed food consumption and biomarkers. Ultra-processed foods accounted for 16% of energy intake and vitamin E intakes by all women were considered low. Serum alpha-tocopherol was 26.55 (SD 7.98) µmol/L, 5% (n=11) showed inadequate vitamin E (<12µmol/L), and 78% had an inadequate BMVE content (< 4mg/780mL). The regression showed that a higher dietary share of ultra-processed foods was associated with lower concentrations of serum alpha-tocopherol (β=-0.168, CI=-0.047-0.010, p=0.003) and inadequate BMVE content (β=-0.144, CI=-0.505-0.063, p=0.012) (adjustment for income and maternal age). Thus, higher dietary shares of ultra-processed foods had an impact on vitamin E biomarkers, suggesting that inadequate dietary intake practices during lactation may reduce the supply of vitamin E to women and breast milk.

Read More

Progress in the study of D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) reversing multidrug resistance

Huixian Yan, Xiyou Du, Rujuan Wang, Guangxi Zhai

Colloids Surf B Biointerfaces . 2021 Jun 8;205:111914.

Abstract

Currently, multidrug resistance (MDR) is one of the major reasons for failure in clinical cancer chemotherapy. Overexpression of the ATP binding cassette (ABC) transporter P-glycoprotein (P-gp), which significantly increases the efflux of anticancer drugs from tumor cells, enhances MDR. In the past few decades, four generations of P-gp inhibitors have appeared. However, they are limited in clinical application due to their severe toxic side effects. As a P-gp inhibitor and carrier for loading chemotherapy agents, TPGS has received increasing attention due to its advantages and unique properties of reversing MDR. TPGS is an amphipathic agent that increases the solubility of most chemotherapy drugs and decreases severe side effects. In addition, TPGS is an excellent carrier with P-gp-inhibiting ability. In this review, we summarize the latest articles on TPGS-based nanodelivery systems to prevent MDR.

Read More

Administration of vitamin E attenuates airway inflammation through restoration of Nrf2 in a mouse model of asthma

Quang Luu Quoc, Tra Cao Thi Bich, Seo-Hee Kim, Hae-Sim Park, Yoo Seob Shin

J Cell Mol Med . 2021 Jun 4. doi: 10.1111/jcmm.16675. Online ahead of print.

Abstract

Accumulating evidence reveals that ROS is one of the key mediators that contribute to the development of asthma. Studies on antioxidants have shown to have beneficial effects on asthma management. However, we still do not know the precise mechanism, and the effects depend on age. This study was conducted to assess the levels of ROS and the effect of antioxidants in younger and older mice using an eosinophilic asthma model. We analyzed airway hyperresponsiveness (AHR), cytokines in bronchoalveolar lavage fluid (BALF), inflammatory cell counts, and the expression levels of NFκB, Nrf2, EPx, and EDN in the lung tissue, as well as the level of ROS in the lung tissue and BALF. The degree of eosinophilia and the levels of IL-5, ROS, and NFκB were significantly increased, whereas the endogenous levels of vitamin E and Nrf2 were decreased in the lung and BALF in the older mice compared to younger mice. The administration of vitamin E attenuated AHR, airway inflammation, and the level of IL-13 and ROS and enhanced the Nrf2 level in the older mice compared to the younger mice. Taken together, vitamin E treatment may have the therapeutic potential through restoration of the Nrf2 level, especially in elderly asthma.

Read More

Topical cream containing nanoparticles with vitamin E to prevent radiodermatitis in women with breast cancer: a clinical trial protocol

Fernanda Mateus Queiróz Schmidt, Carol V Serna González, Rodrigo Calixto Mattar, Luciana Biagini Lopes, Marinilce Fagundes Dos Santos, Vera L C de Gouveia Santos

J Wound Care . 2021 Jun 1;30(Sup6):S44-S50. doi: 10.12968/jowc.2021.30.Sup6.S44.

Abstract

Objective: Little is known about the efficacy of products aiming to prevent radiodermatitis, which affects between 90-95% of women with breast cancer. The use of antioxidants is promising, however, there is a lack of evidenceon their effectiveness. Here, the authors present a clinical trial protocol to evaluate the effects of applying a cream containing nanoparticles with vitamin E to prevent radiodermatitis in patients with breast cancer.

Method: The protocol recommends that 108 women with breast cancer, receiving radiotherapy, are included in this triple-blinded, randomized, controlled study at an oncology hospital. Patients will be divided in three groups of 36 individuals each: group A will receive a cream with lipid nanoparticles and vitamin E, group B will receive a cream without nanoparticles nor vitamin E, and group C will receive a cream with nanoparticles without vitamin E. The primary endpoints will evaluate the incidence, degree, and time of onset of radiodermatitis. The secondary endpoints will focus on the quality of life, symptoms, and local temperature. Patients will be assessed three times a week, from the start of their radiotherapy treatment to two weeks after the last session. This protocol was approved by the research ethics committee of the institutions involved and registered on an international trials database.

Read More

δ-Tocotrienol induces apoptosis and inhibits proliferation of nasopharyngeal carcinoma cells

Junjun Shen, Tao Yang, Yiping Tang, Tianyi Guo, Ting Guo, Tao Hu, Feijun Luo, Qinlu Lin

Food Funct . 2021 May 31. doi: 10.1039/d1fo00461a. Online ahead of print.

Abstract

Nasopharyngeal carcinoma has a notably high incidence rate in Southern China, Southeast Asia, North Africa, Middle East, and the Arctic. δ-Tocotrienol is abundant in cereal and has some health benefits. In our recent study, we showed that δ-tocotrienol exerted anti-inflammatory effects in murine macrophages in vitro. The aim of this study was to further investigate the chemopreventive effects of δ-tocotrienol on human CNE1 cells. We showed that δ-tocotrienol induced apoptosis and cell cycle arrest at G0/G1 and M phases in nasopharyngeal carcinoma cells. Microarray analysis revealed that after CNE1 cells were treated with δ-tocotrienol, 169 genes were up-regulated and 167 down-regulated. ERK1/2 was shown to play a vital role in cell cycle arrest by gene chips. The results suggest that δ-tocotrienol induces cell cycle arrest in CNE1 cells via the p16/CDK4/cyclin D1 signaling pathway. Western blots showed that CNE1 apoptosis was related to dysregulated expression of Bax-2 and Bcl-2. Furthermore, caspase-3, -8, -9 up-regulation was related to the apoptotic effect of δ-tocotrienol; therefore, δ-tocotrienol triggers apoptosis in CNE1 cells through caspase-3 signaling. δ-Tocotrienol may potentially be developed as an anti-cancer agent in the management of nasopharyngeal carcinoma.

Read More

Tocotrienols: Dietary Supplements for Chronic Obstructive Pulmonary Disease

Xiangming Ji, Hongwei Yao, Maureen Meister, Douglas S Gardenhire, Huanbiao Mo

Antioxidants (Basel) . 2021 May 31;10(6):883. doi: 10.3390/antiox10060883.

Abstract

Chronic obstructive pulmonary disease (COPD) is one of the leading causes of death worldwide. Emphysema and chronic bronchitis are the two major phenotypes of COPD, which have many symptoms, such as dyspnea, chronic cough, and mucus overproduction. Emphysema is characterized by the destruction of the alveolar wall, while chronic bronchitis is characterized by limitations in expiratory airflow. Cigarette smoking is the most significant risk factor for the pathogenesis of COPD in the developed world. Chronic inflammation contributes to the onset and progression of the disease and furthers the risk of comorbidities. Current treatment options and prevention strategies for COPD are very limited. Tocotrienols are a group of vitamin E molecules with antioxidant and anti-inflammatory properties. Individual tocotrienols (α, γ, and δ) have shown their ability to attenuate inflammation specifically via suppressing nuclear factor-κB-mediated cytokine production. The δ- and γ-forms of tocotrienols have been indicated as the most effective in the prevention of macrophage infiltration, production of reactive oxygen species, and cytokine secretion. This review briefly discusses the pathogenesis of COPD and the role of inflammation therein. Furthermore, we summarize the in vitro and in vivo evidence for the anti-inflammatory activity of tocotrienols and their potential application to COPD management. Coupled with the bioavailability and safety profile of tocotrienols, the ability of these compounds to modulate COPD progression by targeting the inflammation pathways renders them potential candidates for novel therapeutic approaches in the treatment of COPD patients.

Read More